SRNA sequencing of liver from lean rats and ZDF rats treated with vehicle or colesevelam
Ontology highlight
ABSTRACT: Colesevelam is a bile acid sequestrant approved to treat both hyperlipidemia and type 2 diabetes, but the mechanism for its glucose lowering effects is not fully understood. The aim of this study was to investigate the role of hepatic microRNA’s as regulators of metabolic disease and to investigate the link between the cholesterol and glucose lowering effects of colesevelam. To quantify the impact of colesevelam treatment in rodent models of diabetes, metabolic studies were performed in Zucker Diabetic Fatty (ZDF) rats and db/db mice. Colesevelam treatments significantly decreased plasma glucose levels and increased glycolysis in the absence of changes to insulin levels in ZDF rats and db/db mice. High-throughput sequencing and real-time PCR were used to quantify hepatic miRNA and mRNA changes, and the cholesterol-sensitive miR-96/182/183 cluster was found to be significantly increased in livers from ZDF rats treated with colesevelam compared to vehicle controls. In summary, these results support that colesevelam likely improves glycemic control through hepatic miR-96/182/183, a mechanism that directly links cholesterol and glucose metabolism.
Project description:Memory formation is a complex cognitive function regulated by coordinated synaptic and nuclear processes in neurons. In mammals, it is controlled by multiple molecular activators and suppressors, including the key signaling regulator protein phosphatase 1 (PP1). Here, we show that memory control by PP1 involves the miR-183/96/182 cluster, which is selectively regulated during memory formation. Inhibiting nuclear PP1 in mice brain or training in object recognition task similarly increases miR-183/96/182 expression in the hippocampus. Mimicking this increase by overexpressing miR-183/96/182 enhances object memory, while suppressing endogenous level of the cluster reduces it. This effect involves the modulation of many plasticity-related genes, and we identified HDAC9 as one of the functional targets. Further, PP1 controls miR-183/96/182 in a transcription-independent manner influencing processing of their precursors. These findings provide novel evidence for the role of miRNAs in memory formation and suggest the implication of PP1 in miRNAs processing in the adult brain.
Project description:Population based studies have established that androgen deficiency in males correlates with type 2 diabetes, visceral adiposity, and metabolic syndrome. Androgen therapy has been investigated as a possible treatment regime to combat these disorders. However, the molecular mechanism of androgen effects on these diseases still remain poorly understood. The zucker diabetic fatty (ZDF) rat, containing a mutation in the leptin receptor, is a well-investigated model of obesity and type 2 diabetes. Male rats are characterized as androgen deficient and spontaneously develop obese, hyperlipidemia, hyperglycemia and hyperinsulinemia. In this study, we used ZDF male rats as a model of metabolic syndrome to investigate the effects of testosterone administration on the development of the metabolic conditions. Methods: Male ZDF rats at six week of age were randomly divided into two groups and administered testosterone undecanoate(TU) or vehicle alone every three days for three weeks. After three weeks, overnight fasted blood glucose and insulin concentrations were significantly higher and glucose tolerance and insulin sensitivity were impaired in TU treated ZDF rats compared to vehicle controls. Moreover, increased serum triglycerides and VLDL were observed in TU treated rats. To further explore the observed metabolic changes in TU treated ZDF rats, whole-genome microarray analysis were performed on isolated liver mRNA. Results: Array analysis revealed that many hepatic lipogenic genes were increased in male ZDF rat livers treated with TU. Interestingly, SREBP-1c, a key transcriptional activator of lipogenic genes and PGC-1 , an activator of SREBP-1c were induced while small heterodimer partner, a transcriptional inhibitor of lipogenic genes was suppressed by TU treatment. Exploring signaling pathways for these effects, we observed that the hepatic activated forms of STAT3 and AMPK, two known inhibitors of hepatic lipogenesis, were decreased in TU treated rat. Moreover, we observed that DHT could block the induction of STAT3 and AMPK phosphorylation in treated primary human hepatocytes. Preliminarily, in the leptin receptor positive zucker diabetic lean male rats, we observed that TU treatment has an oppose effect on the hepatic lipogenic genes, suggesting that hepatic leptin signaling may influence androgen signaling. Further insight into the relationship between androgen deficiency and the leptin system may help improve treatment of the metabolic syndrome. Population based studies have established that androgen deficiency in males correlates with type 2 diabetes, visceral adiposity, and metabolic syndrome. Androgen therapy has been investigated as a possible treatment regime to combat these disorders. However, the molecular mechanism of androgen effects on these diseases still remain poorly understood. The zucker diabetic fatty (ZDF) rat, containing a mutation in the leptin receptor, is a well-investigated model of obesity and type 2 diabetes. Male rats are characterized as androgen deficient and spontaneously develop obese, hyperlipidemia, hyperglycemia and hyperinsulinemia. In this study, we used ZDF male rats as a model of metabolic syndrome to investigate the effects of testosterone administration on the development of the metabolic conditions. Two-condition experiment. (1) lean ZDF rats (control) vs. lean ZDF rats (testosterone treated). (2) obese ZDF rats (control) vs. obese ZDF rats (testosterone treated). Biological replicates: 4 control replicates, 4 treated replicates.
Project description:variant MCC cell lines show lower expression levels of the EMT-related microRNAs miR-200c-141 and miR-183-96-182 in contrast to classcial MCC cell lines
Project description:Population based studies have established that androgen deficiency in males correlates with type 2 diabetes, visceral adiposity, and metabolic syndrome. Androgen therapy has been investigated as a possible treatment regime to combat these disorders. However, the molecular mechanism of androgen effects on these diseases still remain poorly understood. The zucker diabetic fatty (ZDF) rat, containing a mutation in the leptin receptor, is a well-investigated model of obesity and type 2 diabetes. Male rats are characterized as androgen deficient and spontaneously develop obese, hyperlipidemia, hyperglycemia and hyperinsulinemia. In this study, we used ZDF male rats as a model of metabolic syndrome to investigate the effects of testosterone administration on the development of the metabolic conditions. Methods: Male ZDF rats at six week of age were randomly divided into two groups and administered testosterone undecanoate(TU) or vehicle alone every three days for three weeks. After three weeks, overnight fasted blood glucose and insulin concentrations were significantly higher and glucose tolerance and insulin sensitivity were impaired in TU treated ZDF rats compared to vehicle controls. Moreover, increased serum triglycerides and VLDL were observed in TU treated rats. To further explore the observed metabolic changes in TU treated ZDF rats, whole-genome microarray analysis were performed on isolated liver mRNA. Results: Array analysis revealed that many hepatic lipogenic genes were increased in male ZDF rat livers treated with TU. Interestingly, SREBP-1c, a key transcriptional activator of lipogenic genes and PGC-1 , an activator of SREBP-1c were induced while small heterodimer partner, a transcriptional inhibitor of lipogenic genes was suppressed by TU treatment. Exploring signaling pathways for these effects, we observed that the hepatic activated forms of STAT3 and AMPK, two known inhibitors of hepatic lipogenesis, were decreased in TU treated rat. Moreover, we observed that DHT could block the induction of STAT3 and AMPK phosphorylation in treated primary human hepatocytes. Preliminarily, in the leptin receptor positive zucker diabetic lean male rats, we observed that TU treatment has an oppose effect on the hepatic lipogenic genes, suggesting that hepatic leptin signaling may influence androgen signaling. Further insight into the relationship between androgen deficiency and the leptin system may help improve treatment of the metabolic syndrome. Population based studies have established that androgen deficiency in males correlates with type 2 diabetes, visceral adiposity, and metabolic syndrome. Androgen therapy has been investigated as a possible treatment regime to combat these disorders. However, the molecular mechanism of androgen effects on these diseases still remain poorly understood. The zucker diabetic fatty (ZDF) rat, containing a mutation in the leptin receptor, is a well-investigated model of obesity and type 2 diabetes. Male rats are characterized as androgen deficient and spontaneously develop obese, hyperlipidemia, hyperglycemia and hyperinsulinemia. In this study, we used ZDF male rats as a model of metabolic syndrome to investigate the effects of testosterone administration on the development of the metabolic conditions.
Project description:In this study we have analyzed gene expression and metabolite levels in the livers of male and female Zucker diabetic fatty (ZDF) rats. We speculated that the sex different development of diabetes in the ZDF animals presents the opportunity to relate gender to diabetes (since only males become diabetic on normal diet). In this model one can search for parameters that distinguish females fed normal diet compared to high fat diet (i.e. components that vary with the development of diabetes) and evaluate if such changes can be related to components that characterize male diabetic animals.. Biological replicates: 4 ZDF female rat livers from rats on a standard diet (SD) and 4 ZDF female rat livers from rats on high-fat diet (HFD) (6 weeks). One replicate per array. Hepatic gene expression, hepatic metabolites, sex-differences
Project description:In this study we have analyzed gene expression and metabolite levels in the livers of male and female Zucker diabetic fatty (ZDF) rats. We speculated that the sex different development of diabetes in the ZDF animals presents the opportunity to relate gender to diabetes (since only males become diabetic on normal diet). In this model one can search for parameters that distinguish females fed normal diet compared to high fat diet (i.e. components that vary with the development of diabetes) and evaluate if such changes can be related to components that characterize male diabetic animals.. Biological replicates: 4 male ZDF rat livers from rats on a standard diet (SD) and 4 ZDF female rat livers from rats on a standard diet (SD). One replicate per array. Hepatic gene expression, hepatic metabolites, sex-differences
Project description:The conserved miR-183/96/182 cluster (miR-183C) regulates both corneal sensory innervation and corneal resident immune cells (CRICs). This study is to uncover its role in CRICs and in shaping the corneal cellular landscape at a single-cell (sc) level.
Project description:The ZDF rat, with spontaneous homozygous mutation of the leptin receptor gene (fa/fa), is one of the widely used animal model for studying the human type 2 diabetes mellitus (T2DM). Male ZDF rats have the symptoms of obesity and insulin resistance at a young age, accompanying with impaired islet function. However, their hepatic pathogenesis is still unclear. Based on the successive observations and the transcriptomic analyses of the liver tissue at 22 weeks old, we detected the typical clinical indications of T2DM, severe hepatic metabolic remodeling and the inflammatory liver injury in the ZDF rats. The integrin linked kinase signaling, as well as the endoplasmic reticulum stress and its downstream p38 MAPK signaling, seemed to play crucial roles in it. We have proved the ZDF rats could better simulate the pathogenesis of the human T2DM associated nonalcoholic fatty liver disease (NAFLD), and provided targets and reference for future T2DM studies.
Project description:Transgenic FVB/NCrl-Tg(GFAP-Mir183,Mir96,Mir182)MDW1 mice (Tg1MDW) overexpress this neurosensory-specific miRNA cluster in the inner ear and were developed as a model system to identify target genes and biologic processes regulated by the miR-183 cluster. Affymetrix mRNA microarray data analysis revealed that downregulated genes in P5 Tg1MDW/1MDW cochlea are statistically enriched for evolutionarily conserved predicted miR-96, miR-182 or miR-183 target sites.
Project description:In previous in vitro study, we reported potential mechanism of cholesterol-lowering effect of Lactobacillus brevis119-2 (119-2) isolated from turnip M-bM-^@M-^\Tsuda kabuM-bM-^@M-^] is due to incorporation of cholesterol into 119-2 cell. In this study, we analyzed serum cholesterol and hepatic gene expression of Sprague-Dawley (SD) rat fed diet containing cholesterol with or without 119-2 for 2 weeks, to evaluate the cholesterol-lowering effect of 119-2 in vivo. Serum cholesterol of SD rat fed diet with 119-2 significantly decreased compared to SD rat fed diet without 119-2, and both viable and dead 119-2 indicated the effect. The result of hepatic gene analysis using DNA microarray suggested that potential mechanism of the cholesterol-lowering effect of 119-2 in vivo is inhibiting the activity of 3-hydroxy-3-methylglutaryl-CoA reductase by Insig (insulin induced gene) that is endoplasmic reticulum membrane protein, and catabolizing cholesterol to bile acid by Cyp7a1 (cytochrome P450 a1) that is the rate-limiting enzyme in the synthesis of bile acid from cholesterol. In addition, we concluded feeding 119-2 decreased serum low density lipoprotein (LDL) cholesterol by overexpression of Ldlr (LDL receptor gene). On the other hand, feeding Lactobacillus acidophilus ATCC43121 (ATCC) increased high density lipoprotein (HDL) cholesterol by over expression of Abca1 (ATP binding cassette sub-family A member 1 gene) and Angplt3 (Angiopoietin-like 3). These results suggested that 119-2 decrease the risk of atherosclerosis by serum cholesterol-lowering effect and improving effect of fatty liver and the LH (LDL cholesterol / HDL cholesterol) ratio. Lactobacillus brevis119-2 (119-2) was isolated from turnip M-bM-^@M-^\Tsuda kabuM-bM-^@M-^] harvested in Matsue city, Shimane Prefecture, Japan, and was stored at Shimane Institute for industrial Technology. Male Jcl: SD rat (4 weeks of age) were obtained from CLEA Japan, Inc. (Tokyo, Japan). Rats were maintained under controlled environmental conditions (temperature 23 M-BM-1 3 M-KM-^ZC, relative humidity 55% M-BM-1 25%, 12/12hr light - dark cycle) and given food and water ad libitum. All rats were acclimated 1 week prior to the experiment. Two groups of 11 rats each were treated respective group diets for 2weeks. Control group was fed high-cholesterol diet containing 10 g cholesterol/kg, 5 g cholic acid/kg, 985 g mouse & rat & rabbit diet (CRF-1) /kg obtained from Oriental yeast Co., Ltd (Tokyo, Japan). The other group was fed same highcholesterol diet with 10 g freeze-dried viable 119-2 /kg. This study and all procedures were approved by regulations and code of ethics in experimental animals Chitose Japan Food Research Laboratories.