MicroRNA-mediated suppression of the TGF-β pathway confers transmissible and reversible CDK4/6 inhibitor resistance (RNA-Seq)
Ontology highlight
ABSTRACT: CDK4/6 inhibition is now part of the standard armamentarium for patients with estrogen receptor (ER)-positive breast cancer, so that defining mechanisms of resistance is a pressing issue. Here, we identify increased CDK6 expression as a key determinant of acquired resistance after exposure to palbociclib in ER-positive breast cancer cells. Increased CDK6 in resistant cells was dependent on TGF-β pathway suppression via miR-432-5p expression. Exosomal miR-432-5p expression mediated transfer of the resistance phenotype between neighboring cell populations. We confirmed these data in pre-treatment and post-progression biopsies from a parotid cancer patient who had responded to ribociclib, demonstrating clinical relevance of this mechanism. Additionally, the CDK4/6 inhibitor resistance phenotype can be reversed in vitro and in vivo by a prolonged drug holiday.
Project description:CDK4/6 inhibition is now part of the standard armamentarium for patients with estrogen receptor (ER)-positive breast cancer, so that defining mechanisms of resistance is a pressing issue. Here, we identify increased CDK6 expression as a key determinant of acquired resistance after exposure to palbociclib in ER-positive breast cancer cells. Increased CDK6 in resistant cells was dependent on TGF-β pathway suppression via miR-432-5p expression. Exosomal miR-432-5p expression mediated transfer of the resistance phenotype between neighboring cell populations. We confirmed these data in pre-treatment and post-progression biopsies from a parotid cancer patient who had responded to ribociclib, demonstrating clinical relevance of this mechanism. Additionally, the CDK4/6 inhibitor resistance phenotype can be reversed in vitro and in vivo by a prolonged drug holiday.
Project description:CDK4/6 inhibition is now part of the standard armamentarium for patients with estrogen receptor (ER)-positive breast cancer, so that defining mechanisms of resistance is a pressing issue. Here, we identify increased CDK6 expression as a key determinant of acquired resistance after exposure to palbociclib in ER-positive breast cancer cells. Increased CDK6 in resistant cells was dependent on TGF-β pathway suppression via miR-432-5p expression. Exosomal miR-432-5p expression mediated transfer of the resistance phenotype between neighboring cell populations. We confirmed these data in pre-treatment and post-progression biopsies from a parotid cancer patient who had responded to ribociclib, demonstrating clinical relevance of this mechanism. Additionally, the CDK4/6 inhibitor resistance phenotype can be reversed in vitro and in vivo by a prolonged drug holiday.
Project description:CDK4/6 inhibition is now part of the standard armamentarium for patients with estrogen receptor (ER)-positive breast cancer, so that defining mechanisms of resistance is a pressing issue. Here, we identify increased CDK6 expression as a key determinant of acquired resistance after exposure to palbociclib in ER-positive breast cancer cells. Increased CDK6 in resistant cells was dependent on TGF-β pathway suppression via miR-432-5p expression. Exosomal miR-432-5p expression mediated transfer of the resistance phenotype between neighboring cell populations. We confirmed these data in pre-treatment and post-progression biopsies from a parotid cancer patient who had responded to ribociclib, demonstrating clinical relevance of this mechanism. Additionally, the CDK4/6 inhibitor resistance phenotype can be reversed in vitro and in vivo by a prolonged drug holiday.
Project description:CDK4/6 inhibition is now part of the standard armamentarium for patients with estrogen receptor (ER)-positive breast cancer, so that defining mechanisms of resistance is a pressing issue. Here, we identify increased CDK6 expression as a key determinant of acquired resistance after exposure to palbociclib in ER-positive breast cancer cells. Increased CDK6 in resistant cells was dependent on TGF-β pathway suppression via miR-432-5p expression. Exosomal miR-432-5p expression mediated transfer of the resistance phenotype between neighboring cell populations. We confirmed these data in pre-treatment and post-progression biopsies from a parotid cancer patient who had responded to ribociclib, demonstrating clinical relevance of this mechanism. Additionally, the CDK4/6 inhibitor resistance phenotype can be reversed in vitro and in vivo by a prolonged drug holiday.
Project description:Resistance to aromatase inhibitor (AI) treatment and combined CDK4/6 inhibitor (CDK4/6i) and endocrine therapy (ET) are crucial clinical challenges in treating estrogen receptor-positive (ER+) breast cancer. Understanding the resistance mechanisms and identifying reliable predictive biomarkers and novel treatment combinations to overcome resistance are urgently needed. Herein, we show that upregulation of CDK6, p-CDK2, and/or cyclin E1 is associated with adaptation and resistance to AI-monotherapy and combined CDK4/6i and ET in ER+ advanced breast cancer. Importantly, co-targeting CDK2 and CDK4/6 with ET synergistically impairs cellular growth, induces cell cycle arrest and apoptosis, and delays progression in AI-resistant and combined CDK4/6i and fulvestrant-resistant cell models and in an AI-resistant autocrine breast tumor in a postmenopausal xenograft model. Analysis of CDK6, p-CDK2, and/or cyclin E1 expression as a combined biomarker in metastatic lesions of ER+ advanced breast cancer patients treated with AI-monotherapy or combined CDK4/6i and ET revealed a correlation between high biomarker expression and shorter progression-free survival (PFS), and the biomarker combination was an independent prognostic factor in both patients cohorts. Our study supports the clinical development of therapeutic strategies co-targeting ER, CDK4/6 and CDK2 following progression on AI-monotherapy or combined CDK4/6i and ET to improve survival of patients exhibiting high tumor levels of CDK6, p-CDK2, and/or cyclin E1.
Project description:CDK4/6 inhibitors (CDK4/6i) are effective in metastatic breast cancer, but they have been only modestly effective in most other tumor types. Here we show that tumors expressing low CDK6 rely on CDK4 function, and are exquisitely sensitive to CDK4/6i. In contrast, tumor cells expressing both CDK4 and CDK6 have increased reliance on CDK6 to ensure cell cycle progression. We discovered that CDK4/6i and CDK4/6 degraders potently bind and inhibit CDK6 selectively in tumors in which CDK6 is highly thermo-unstable and strongly associated with the HSP90/CDC37 complex. In contrast, CDK4/6i and CDK4/6 degraders are ineffective in antagonizing tumor cells expressing thermostable CDK6, due to their weaker binding to CDK6 in these cells. Thus, we uncover a general mechanism of intrinsic resistance to CDK4/6i and CDK4/6i-derived degraders and the need for novel inhibitors targeting the CDK4/6i-resistant, thermostable form of CDK6 for application as cancer therapeutics.
Project description:Purpose: Resistance to endocrine therapy in estrogen receptor-positive (ER+) breast cancer remains a major clinical problem. Recently, the CDK4/6 inhibitor palbociclib combined with letrozole was approved for treatment of ER+ advanced breast cancer, and other CDK4/6 inhibitors are being investigated in combination with different endocrine treatments. However, the role of CDK4/6 in endocrine resistance and their potential as predictive biomarkers of endocrine treatment response remains undefined. Experimental Design: We investigated the specific role of increased CDK6 expression in fulvestrant-resistant cells by gene knockdown and treatment with palbociclib, and evaluated the effect in cell proliferation, apoptosis and kinase activity. Furthermore, we evaluated CDK6 expression in metastatic samples from breast cancer patients treated or not with fulvestrant. Results: We found increased expression of CDK6 in two fulvestrant-resistant cell models vs. sensitive cells. Reduction of CDK6 expression impaired fulvestrant-resistant cell growth and induced apoptosis by reducing p70 ribosomal S6 kinase 2 activity. Treatment with palbociclib re-sensitized fulvestrant-resistant cells to fulvestrant through alteration of retinoblastoma phosphorylation. High CDK6 levels in metastatic samples from breast cancer patients treated with fulvestrant (N=45) correlated significantly with shorter progression-free survival (PFS) (p=0.0006), while no association was observed in patients receiving other endocrine treatments (N=41, p=0.874). Conclusions: Our results indicate that upregulation of CDK6 may be an important mechanism in overcoming fulvestrant-mediated growth inhibition in breast cancer cells. Patients with advanced ER+ breast cancer exhibiting high CDK6 expression in the metastatic lesions show shorter PFS upon fulvestrant treatment and thus may benefit from the addition of CDK4/6 inhibitors in their therapeutic regimens.
Project description:We report a novel resistance mechanism to CDK4/6 inhibition in Hedgehog-associated medulloblastoma where cell models and mouse models demonstrate that prolonged inhibition of CDK4/6 inhibits ribosome biogenesis, activates the unfolded protein response, and increases the amount of Smoothened-activating lipids. This RNA-Sequencing dataset represents genomically-engineered mouse medulloblastoma models that either have wild-type Cdk6 or genomic knockout of Cdk6. We find that tumors that grew despite genetic loss of Cdk6 have suppresed ribosome biogenesis.
Project description:The p53 tumour suppressor is a transcription factor that can regulate the expression of numerous genes encoding either proteins or microRNAs (miRNAs). The predominant outcomes of a typical p53 response are the initiation of apoptotic cascades and the activation of cell cycle checkpoints. HT29-tsp53 cells express a temperature sensitive variant of p53 and in the absence of exogenous DNA damage, these cells preferentially undergo G1 phase cell cycle arrest at the permissive temperature that correlates with increased expression of the cyclin-dependent kinase inhibitor p21WAF1. Recent evidence also suggests that a variety of miRNAs can induce G1 arrest by inhibiting the expression of proteins like CDK4 and CDK6. Here we used oligonucleotide microarrays to identify p53-regulated miRNAs that are induced in these cells undergoing G1 arrest. At the permissive temperature, the expression of several miRNAs was increased through a combination of either transcriptional or post-transcriptional regulation. In particular, miR-34a-5p, miR-143-3p and miR-145-5p were strongly induced and they reached levels comparable to that of reference miRNAs (miR-191 and miR-103). Importantly, miR-34a-5p and miR-145-5p are known to silence the Cdk4 and/or Cdk6 G1 cyclin-dependent kinases (cdks). Surprisingly, there was no p53-dependent decrease in the expression of either of these G1 cdks. To search for other potential targets of p53-regulated miRNAs, p53-downregulated mRNAs were identified through parallel microarray analysis of mRNA expression. Once again, there was no clear effect of p53 on the repression of mRNAs under these conditions despite a remarkable increase in p53-induced mRNA expression. Therefore, despite a strong p53 transcriptional response, there was no clear evidence that p53-responsive miRNA contributed to gene silencing. Taken together, the changes in cell cycle distribution in this cell line at the permissive temperature is likely attributable to transcriptional upregulation of the CDKN1A mRNA and p21WAF1 protein and not to the down regulation of CDK4 or CDK6 by p53-regulated miRNAs. Two independent experiments were performed with 2 samples in each experiment (1 control and 1 treatment condition). In the control sample, RNA was isolated cells maintained at the restrictive temperature (37ËC). The treatment treated sample, was incubated for 16 hours at the permissive temperature (32ËC).
Project description:Cdk4 and Cdk6 are two related kinases that bind D-type cyclins and regulate cell cycle progression. Due to their relevance in cancer, Cdk4/6 inhibitors are currently in advanced clinical trials in multiple tumor types. Cdk4/6 are inhibited by INK4 proteins that exert tumor suppressing functions. To test the significance of this inhibitory mechanism we have generated knock-in mice that express a Cdk6 mutant (Cdk6 R31C) insensitive to INK4-mediated inhibition. Cdk6R/R mice display altered development of the hematopoietic system without resulting in enhanced tumor susceptibility, either in the presence or absence of p53. The presence of the Cdk6 R31C allele results in defective potential of hematopoietic progenitors in adoptive transfer assays or after induced damage. These defects are rescued after complete insensitivity to INK4 inhibitors in Cdk4R/R; Cdk6R/R double mutant mice, and INK4-resistant mice display increased susceptibility to hematopoietic and endocrine tumors. In BCR-ABL-transformed hematopoietic cells, the presence of the Cdk6 R31C allele results in increased binding of p16INK4a to wild-type Cdk4, whereas the double mutant is fully insensitive to INK4 inhibitors resulting in accelerated disease onset. Our observations reveal that Cdk4 and Cdk6 cooperate in tumor development and suggest a role for Cdk6 in buffering INK4 protein levels thus contributing to the development of hematopoietic tumors. The presence of the Cdk4 R24C and Cdk6 R31C alleles results in relevant changes in the expression profiles of cancer cells including deregulation of apoptosis and other processes. p185BCR-ABL1 was used to transform wild-type or double knock-in Cdk4 R24C; Cdk6 R31C fetal livers. Cell lines were isolated as spontaneous immortal and transformed clones after transduction of fetal liver with a p185 BCR-ABL1-transgene. RNA was isolated from asynchronous cultures. Two-condition experiment, Cdk4R-Cdk6R cells versus wild-type cells. Biological replicates: 3 control replicates, 3 transfected replicates.