Transcriptomics

Dataset Information

0

Norepinephrine transporter-deficient neural crest cells


ABSTRACT: Background: The goal of this study was to determine the transcriptional consequences of norepinephrine transporter (NET) gene deletion in noradrenergic neuron differentiation. The norepinephrine transporter (NET) is the target of powerful mind-altering substances, such as tricyclic antidepressants and the drug of abuse, cocaine. NET function in adult noradrenergic neurons of the peripheral and central nervous systems is that of a scavenger that internalizes norepinephrine from the synaptic cleft. By contrast, norepinephrine (NE) transport has a different role in embryogenesis. It promotes differentiation of neural crest cells and locus ceruleus progenitors into noradrenergic neurons, whereas NET inhibitors, such as the tricyclic antidepressant desipramine and the drug of abuse, cocaine, inhibit noradrenergic differentiation. While NET structure und regulation of NET function is well described, little is known about downstream targets of NE transport. Results: We have determined by long serial analysis of gene expression (LongSAGE) the gene expression profiles of in vitro differentiating wild type and norepinephrine transporter-deficient (NETKO) neural crest derivatives. Comparison analyses with the wild type library (GSM 105765) have identified a number of important differentially expressed genes, including genes relevant to noradrenergic neuron differentiation and to the phenotype of NETKO mice. Furthermore we have identified novel differentially expressed genes. Conclusions: Loss of NET function during embryonic development deregulates signaling pathways that are critically involved in neural crest formation and noradrenergic neuron differentiation.

ORGANISM(S): Mus musculus

PROVIDER: GSE11788 | GEO | 2008/06/23

SECONDARY ACCESSION(S): PRJNA105985

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2008-06-23 | E-GEOD-11788 | biostudies-arrayexpress
| phs001595 | dbGaP
| PRJNA105985 | ENA
2023-04-14 | GSE225497 | GEO
2017-01-07 | GSE93235 | GEO
2025-01-02 | PXD042363 | Pride
2022-10-30 | GSE216674 | GEO
2015-07-04 | E-GEOD-67281 | biostudies-arrayexpress
2015-07-04 | GSE67281 | GEO
2021-09-09 | PXD022832 | Pride