Acetyl-CoA carboxylase inhibition regulates microtubule dynamics and intracellular transport in cystic fibrosis epithelial cells
Ontology highlight
ABSTRACT: In this study, we hypothesize that acetyl CoA carboxylase (ACC) is an important intermediate in Cystic fibrosis (CF) inflammatory signaling cascade. Here, we demonstrate that ACC inhibition mimics the cellular effects of ibuprofen promoting both redistribution of intracellular cholesterol and increased rates of microtubule reformation, while decreasing RhoA expression in CF epithelial cell models. Inhibiting ACC polymerization with citrate increases RhoA expression and decreases microtubule reformation rates in wild-type epithelial cells, suggesting pro-inflammatory signaling. Together, these findings demonstrate a novel mechanism of high-dose ibuprofen efficacy and point to a potential new therapeutic target for anti-inflammatory drugs in CF.
ORGANISM(S): Homo sapiens
PROVIDER: GSE118567 | GEO | 2019/03/18
REPOSITORIES: GEO
ACCESS DATA