RNAseq of oculomotor (OMN) and spinal motor neurons (SC) derived from mouse embryonic stem cells and purified by FACS
Ontology highlight
ABSTRACT: Oculomotor neurons, which regulate eye movement, are resilient to degeneration in the lethal motor neuron disease amyotrophic lateral sclerosis (ALS). It would be highly advantageous if motor neuron resilience could be modeled in vitro. Towards this goal, we generated a high proportion of oculomotor neurons from mouse embryonic stem cells through temporal overexpression of Phox2a in neuronal progenitors. We demonstrate, using immunocytochemistry and RNA sequencing, that in vitro generated neurons are bona fide oculomotor neurons based on their similarity to their in vivo counterpart in rodent and man. We also show that in vitro generated oculomotor neurons display a robust activation of survival-promoting Akt signaling and are more resilient to the ALS-like toxicity of kainic acid than spinal motor neurons. Thus, we can generate bona fide oculomotor neurons in vitro which display a resilience similar to that seen in vivo.
Project description:Oculomotor neurons, which regulate eye movement, are resilient to degeneration in the lethal motor neuron disease amyotrophic lateral sclerosis (ALS). It would be highly advantageous if motor neuron resilience could be modeled in vitro. Towards this goal, we generated a high proportion of oculomotor neurons from mouse embryonic stem cells through temporal overexpression of Phox2a in neuronal progenitors. We demonstrate, using electrophysiology, immunocytochemistry and RNA sequencing, that in vitro generated neurons are bona fide oculomotor neurons based on their similarity to their in vivo counterpart in rodent and man. We also show that in vitro generated oculomotor neurons display a robust activation of survival-promoting Akt signaling and are more resilient to the ALS-like toxicity of kainic acid than spinal motor neurons. Thus, we can generate bona fide oculomotor neurons in vitro which display a resilience similar to that seen in vivo.
Project description:ALS is a uniformly fatal neurodegenerative disease in which motor neurons in the spinal cord and brain stem are selectively lost. Individual motor - groups of motor neurons innervating single muscles - show widely varying degrees of disease resistance: in the final stages of ALS, nearly all voluntary movement is lost but eye movement and eliminative and sexual functions remain relatively unimpaired. These functions are controlled by motor neurons of the oculomotor (III), trochlear (IV) and abducens (VI) nuclei in the midbrain and brainstem, and by Onuf’s nucleus in the lumbosacral spinal cord, respectively. Correspondingly, in ALS autopsies the oculomotor and Onuf’s nuclei are almost completely preserved. We used microarray profiling of isolated wildtype mouse motor neurons to identify genes whose expression was characteristic of both oculomotor and Onuf’s nuclei but not of vulnerable lumbar spinal neurons, or vice versa.
Project description:A consistent clinical feature of amyotrophic lateral sclerosis (ALS) is the sparing of eye movements. Pathological studies have confirmed that there is relative sparing of the cranial motor nuclei of the oculomotor, trochlear and abducens nerves, although pathological changes resembling those seen in anterior horn cells are present to a lesser degree. The aim of the present study is to combine LCM and microarray analysis to study the differences between motor neurons that are selectively resistant (oculomotor neurons) and those that are vulnerable (lumbar spinal motor neurons) to the disease process in amyotrophic lateral sclerosis. We used microarray analysis to determine the differences in gene expression between oculomotor and lumbar spinal motor neurons, isolated by laser capture microdissection from the midbrain and spinal cord of neurologically normal human controls.
Project description:ALS is a uniformly fatal neurodegenerative disease in which motor neurons in the spinal cord and brain stem are selectively lost. Individual motor - groups of motor neurons innervating single muscles - show widely varying degrees of disease resistance: in the final stages of ALS, nearly all voluntary movement is lost but eye movement and eliminative and sexual functions remain relatively unimpaired. These functions are controlled by motor neurons of the oculomotor (III), trochlear (IV) and abducens (VI) nuclei in the midbrain and brainstem, and by Onuf's nucleus in the lumbosacral spinal cord, respectively. Correspondingly, in ALS autopsies the oculomotor and Onuf's nuclei are almost completely preserved. We used microarray profiling of isolated wildtype mouse motor neurons to identify genes whose expression was characteristic of both oculomotor and Onuf's nuclei but not of vulnerable lumbar spinal neurons, or vice versa. Three wild-type C57BL/6J P7 male animals were perfused with 30% sucrose, lumbosacral spinal cord and midbrain regions were rapidly recovered, embedded in OCT compound, and frozen in liquid nitrogen. 12 um-thick cryosections were mounted on RNAse-free, PEN-foil covered glass slides (Zeiss), fixed for 2 min in 100% EtOH, rinsed in 50% EtOH, stained with 1% cresyl violet for 2 min, rinsed with 50% EtOH, dehydrated in graded solutions of ethanol and air dried prior to LCM using PALM Microbeam system (Zeiss). From each animal, ~200 DL, L5, and oculomotor motor neurons were collected directly in lysis buffer. RNA was purified using Absolutely RNA, NanoPrep kit (Stratagene, La Jolla, CA). RNA integrity was assessed on the Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA). At least 1.5 ng of purified RNA was the starting material used in the WT-Ovation Pico RNA Amplification System (Nugen, San Carlos,CA) with the FL-Ovation cDNA Biotin Module V2 (Nugen) to generate labeled probe. 10 ug of biotinylated cRNA from three independent samples for each motor neuron group isolated by LCM was hybridized to on Affymetrix (Santa Clara, CA) Mouse Genome 430 2.0 Arrays. Gene ontology and pathway analysis was performed using DAVID Bioinformatics Resources 6.7 (National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD).
Project description:A consistent clinical feature of amyotrophic lateral sclerosis (ALS) is the sparing of eye movements. Pathological studies have confirmed that there is relative sparing of the cranial motor nuclei of the oculomotor, trochlear and abducens nerves, although pathological changes resembling those seen in anterior horn cells are present to a lesser degree. The aim of the present study is to combine LCM and microarray analysis to study the differences between motor neurons that are selectively resistant (oculomotor neurons) and those that are vulnerable (lumbar spinal motor neurons) to the disease process in amyotrophic lateral sclerosis.
Project description:RNA sequencing analysis of Hb9::GFP mouse embryonic fibroblasts, Hb9::GFP+ primary mouse embryonic motor neurons at day E13.5, Hb9::GFP+ mouse embryonic stem cell-derived motor neurons, Hb9::GFP+ mouse induced pluripotent stem cell derived motor neurons, and Hb9::GFP+ mouse induced motor neurons generated using transcription factor overexpression. The goal of this project is to evaluate the ability of directed differentiation and lineage conversion techniques to generate a bona fide neuronal subtype.
Project description:Gene expression profiles of specific neuronal populations might explain differential vulnerability to neurodegeneration in the lethal disease amyotrophic lateral sclerosis (ALS). Using laser capture microscopy (LCM) and RNA sequencing (LCM-seq), we demonstrate that the molecular signature of degeneration-resistant oculomotor neurons (OMNs) is distinct from that of vulnerable spinal motor neurons (MNs).
Project description:Amyotrophic lateral sclerosis (ALS) spares the ocular motor system. In this study, we tested the hypothesis that the oculomotor neurons are intrinsically protected in ALS. Using high-density cDNA microarrays, we examined the transcriptome of oculomotor nuclei and spinal cords in mice expressing a human mutant SOD1, the SOD1(G93A) ALS model, at 6 and 10 weeks of age. Comparison of gene expression profiles of these pre-symptomatic SOD1(G93A) mice showed a shift to a proapoptotic state in spinal cords, while the opposite was true in oculomotor nuclei. Seventeen members of the A, B, C and D Hox clusters increased in oculomotor nuclei from 6 to 10 weeks of age; 15 were downregulated in spinal cord. Although only the first 4 classes of a given Hox cluster (e.g., Hoxa1-4) are normally expressed in the developing hindbrain, we found differential expression of mostly the latter classes in both oculomotor nuclei and spinal cords. Also, semaphorin 3B was expressed at 28-fold greater levels in oculomotor nuclei and 61-fold less in spinal cords in 10-week old SOD1(G93A) mice compared to 6-week old mice. Semaphorins 3A and 3E were also differentially regulated. Comparison of gene expression profiles of control SOD1 mice of 6 and 10 weeks of age did not show these changes. Based on these results, we rejected our hypothesis and conclude that the oculomotor nuclei actively adapt to the ALS-inducing mutation. Supported by NEI and ALSA. Keywords: disease state analysis
Project description:Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative condition characterized by loss of motor neurons in the brain and spinal cord. Expansions of a hexanucleotide repeat (GGGGCC) in the noncoding region of the C9ORF72 gene are the most common cause of the familial form of ALS (C9-ALS), as well as frontotemporal lobar degeneration and other neurological diseases. How the repeat expansion causes disease remains unclear, with both loss of function (haploinsufficiency) and gain of function (either toxic RNA or protein products) proposed. We report a cellular model of C9-ALS with motor neurons differentiated from induced pluripotent stem cells (iPSCs) derived from ALS patients carrying the C9ORF72 repeat expansion. No significant loss of C9ORF72 expression was observed, and knockdown of the transcript was not toxic to cultured human motor neurons. Transcription of the repeat was increased, leading to accumulation of GGGGCC repeat–containing RNA foci selectively in C9-ALS iPSC-derived motor neurons. Repeat-containing RNA foci colocalized with hnRNPA1 and Pur-?, suggesting that they may be able to alter RNA metabolism. C9-ALS motor neurons showed altered expression of genes involved in membrane excitability including DPP6, and demonstrated a diminished capacity to fire continuous spikes upon depolarization compared to control motor neurons. Antisense oligonucleotides targeting the C9ORF72 transcript suppressed RNA foci formation and reversed gene expression alterations in C9-ALS motor neurons. These data show that patient-derived motor neurons can be used to delineate pathogenic events in ALS. Transcriptome profiling from iPSC derived motor neurons compared to controls
Project description:Amyotrophic lateral sclerosis (ALS) spares the ocular motor system. In this study, we tested the hypothesis that the oculomotor neurons are intrinsically protected in ALS. Using high-density cDNA microarrays, we examined the transcriptome of oculomotor nuclei and spinal cords in mice expressing a human mutant SOD1, the SOD1(G93A) ALS model, at 6 and 10 weeks of age. Comparison of gene expression profiles of these pre-symptomatic SOD1(G93A) mice showed a shift to a proapoptotic state in spinal cords, while the opposite was true in oculomotor nuclei. Seventeen members of the A, B, C and D Hox clusters increased in oculomotor nuclei from 6 to 10 weeks of age; 15 were downregulated in spinal cord. Although only the first 4 classes of a given Hox cluster (e.g., Hoxa1-4) are normally expressed in the developing hindbrain, we found differential expression of mostly the latter classes in both oculomotor nuclei and spinal cords. Also, semaphorin 3B was expressed at 28-fold greater levels in oculomotor nuclei and 61-fold less in spinal cords in 10-week old SOD1(G93A) mice compared to 6-week old mice. Semaphorins 3A and 3E were also differentially regulated. Comparison of gene expression profiles of control SOD1 mice of 6 and 10 weeks of age did not show these changes. Based on these results, we rejected our hypothesis and conclude that the oculomotor nuclei actively adapt to the ALS-inducing mutation.,Supported by NEI and ALSA. <br>Overall design<br>Oligonucleotide microarray studies using the Affymetrix system were conducted as described earlier (McMullen et al., 2004). Biotinylated cRNA was hybridized to Affymetrix Mouse Expression Set 430A GeneChips. Then, the microarrays were washed and stained with a streptavidin-bound marker, and scanned with a laser scanner. Resulting microarray data were analyzed with Affymetrix Microarray Suite 5.0 software. Only those genes with consistent absent/present calls in the three independent replicates per group were considered for further analyses. Comparisons were crossed such that each oculomotor nuclei sample was compared with each spinal cord sample at the corresponding age. The Affymetrix software uses the one-sided Wilcoxons signed rank test to estimate increase/no change/decrease difference calls and fold-changes for each pair-wise comparison. Only difference calls consistent in all pair-wise comparisons and with average changes greater than 2-fold were considered significant, resulting in a conservative list of genes with changed expression levels.