Copy Number Alterations in HNSCC with or without Oncogene Expressing Human Papillomavirus
Ontology highlight
ABSTRACT: Oncogene expressing human papillomavirus type 16 (HPV16) is found in a subset of head and neck squamous cell carcinomas (HNSCC). HPV16 drives carcinogenesis by inactivating p53 and pRb with the viral oncoproteins E6 and E7, reflected by a low level of mutations in TP53 and allelic loss at 3p, 9p and 17p, genetic changes frequently found in HNSCCs of non-viral etiology. We hypothesize that two pathways to HNSCC exist: one determined by HPV16 and one by environmental carcinogens. To define the critical genetic events in these two pathways, we now present a detailed genome analysis of HNSCC with and without HPV16 involvement by employing high resolution micro-array comparative genomic hybridization. Four regions showed alterations in HPV-negative tumors that were absent in HPV-positive tumors: losses at 3p11.2-26.3, 5q11.2-35.2, 9p21.1-24, and gains/amplifications at 11q12.1-13.4. Also, HPV16-negative tumors demonstrated loss at 18q12.1-23, in contrast to gain in HPV16-positive tumors. Seven regions were altered at high frequency (>33%) in both groups: gains at 3q22.2-qter, 5p15.2-pter, 8p11.2-qter, 9q22-34.1, 20p-20q and losses at 11q14.1-qter and 13q11-33. These data show that HNSCC arising by environmental carcinogens are characterized by genetic alterations that differ from those observed in HPV16-induced HNSCC, and most likely occur early in carcinogenesis. A number of genetic changes are shared in both tumor groups and can be considered crucial in the later stages of HNSCC progression.
Project description:Oncogene expressing human papillomavirus type 16 (HPV16) is found in a subset of head and neck squamous cell carcinomas (HNSCC). HPV16 drives carcinogenesis by inactivating p53 and pRb with the viral oncoproteins E6 and E7, reflected by a low level of mutations in TP53 and allelic loss at 3p, 9p and 17p, genetic changes frequently found in HNSCCs of non-viral etiology. We hypothesize that two pathways to HNSCC exist: one determined by HPV16 and one by environmental carcinogens. To define the critical genetic events in these two pathways, we now present a detailed genome analysis of HNSCC with and without HPV16 involvement by employing high resolution micro-array comparative genomic hybridization. Four regions showed alterations in HPV-negative tumors that were absent in HPV-positive tumors: losses at 3p11.2-26.3, 5q11.2-35.2, 9p21.1-24, and gains/amplifications at 11q12.1-13.4. Also, HPV16-negative tumors demonstrated loss at 18q12.1-23, in contrast to gain in HPV16-positive tumors. Seven regions were altered at high frequency (>33%) in both groups: gains at 3q22.2-qter, 5p15.2-pter, 8p11.2-qter, 9q22-34.1, 20p-20q and losses at 11q14.1-qter and 13q11-33. These data show that HNSCC arising by environmental carcinogens are characterized by genetic alterations that differ from those observed in HPV16-induced HNSCC, and most likely occur early in carcinogenesis. A number of genetic changes are shared in both tumor groups and can be considered crucial in the later stages of HNSCC progression. Tumor DNA is isolated from fresh frozen tissue. Tumor DNA is enriched by microdissection. Reference DNA is isolated from blood of normal individuals of the opposit gender.
Project description:A growing proportion of head and neck squamous cell carcinomas (HNSCC) is associated with the human papilloma virus (HPV), particularly HPV16. We compare tumors with different HPV16 DNA and RNA (E6*I) status from 290 consecutively recruited HNSCC patients by gene expression profiling and targeted sequencing of 50 genes. We confirm that the HPV16 DNA+ RNA+ tumors are molecularly distinct from the HPV-negative (DNA-) HNSCC and have elevated expression of cell cycle genes and rare TP53 mutations (3.6%, 1/28). We show that tumors with non-transcriptionally active HPV16 (DNA+ RNA-) are similar to HPV DNA- tumors regarding gene expression and frequency of TP53 mutations (47%, 8/17 and 43%, 72/167, respectively). Furthermore, we identify four gene expression clusters. They moderately but significantly differ in overall survival. One cluster exhibits high expression of immune response genes (IR) and contains most of the HPV16 DNA+ RNA+ patients. The IR cluster and disruptive TP53 mutations are associated with lymph node metastasis independent of HPV16 status and we validate each of these associations in another large data set. Consistent with earlier studies, disruptive TP53 mutations are prognostically unfavorable. Our findings underscore the importance of measuring the HPV16 RNA (E6*I) and TP53-mutation status for patient stratification and for the first time identify associations of an immune response-related gene expression cluster and TP53 mutations with lymph node metastasis in HNSCC.
Project description:A growing proportion of head and neck squamous cell carcinomas (HNSCC) is associated with the human papilloma virus (HPV), particularly HPV16. We compare tumors with different HPV16 DNA and RNA (E6*I) status from 290 consecutively recruited HNSCC patients by gene expression profiling and targeted sequencing of 50 genes. We confirm that the HPV16 DNA+ RNA+ tumors are molecularly distinct from the HPV-negative (DNA-) HNSCC and have elevated expression of cell cycle genes and rare TP53 mutations (3.6%, 1/28). We show that tumors with non-transcriptionally active HPV16 (DNA+ RNA-) are similar to HPV DNA- tumors regarding gene expression and frequency of TP53 mutations (47%, 8/17 and 43%, 72/167, respectively). Furthermore, we identify four gene expression clusters. They moderately but significantly differ in overall survival. One cluster exhibits high expression of immune response genes (IR) and contains most of the HPV16 DNA+ RNA+ patients. The IR cluster and disruptive TP53 mutations are associated with lymph node metastasis independent of HPV16 status and we validate each of these associations in another large data set. Consistent with earlier studies, disruptive TP53 mutations are prognostically unfavorable. Our findings underscore the importance of measuring the HPV16 RNA (E6*I) and TP53-mutation status for patient stratification and for the first time identify associations of an immune response-related gene expression cluster and TP53 mutations with lymph node metastasis in HNSCC. A total of 300 samples were considered. Quality control procedures were applied to microarray probe-level intensity files. A total of 270 tumor arrays remained after removing low-quality arrays, duplicate arrays, and arrays from non-HNSCC samples. Expression values were log2-transformed and normalized using RSN.
Project description:It is well known that high-risk human papilloma virus (HR-HPV) infection is strongly associated with cervical cancer and E7 was identified as one of the key initiators in HPV-mediated carcinogenesis. Here we show that lactate dehydrogenase A (LDHA) preferably locates in the nucleus in HPV16-positive cervical tumors due to E7-induced intracellular reactive oxygen species (ROS) accumulation. Surprisingly, nuclear LDHA gains a non-canonical enzyme activity to produce α-hydroxybutyrate and triggers DOT1L (disruptor of telomeric silencing 1-like)-mediated histone H3K79 hypermethylation, resulting in the activation of antioxidant responses and Wnt signaling pathway. Furthermore, HPV16 E7 knocking-out reduces LDHA nuclear translocation and H3K79 tri-methylation in K14-HPV16 transgenic mouse model. HPV16 E7 level is significantly positively correlated with nuclear LDHA and H3K79 tri-methylation in cervical cancer. Collectively, our findings uncover a non-canonical enzyme activity of nuclear LDHA to epigenetically control cellular redox balance and cell proliferation facilitating HPV-induced cervical cancer development.
Project description:Introduction: Human Papilloma Virus (HPV) is associated with a subset of head and neck squamous cell carcinoma (HNSCC), between 15% and 35% of HNSCC harboring HPV, almost exclusively of subtype 16. Demographic and exposure differences between HPV-positive (+) and negative (-) HNSCCs suggest that HPV(+) tumors may constitute a subclass with different biology, while clinical differences have also been observed. In this study, gene expression profiles of HPV(+) and (-) tumors were compared to further explore the biological effect of HPV in HNSCC. Methods: Thirty-six HNSCC tumors were analyzed for gene expression using Affymetrix Human 133U Plus 2.0 GeneChip and for HPV using consensus primers for HPV L1, E6 and E7 by PCR and RT-PCR. Results: Eight (22%) of 36 tumors were positive for HPV, all of the HPV 16 subtype, and the HPV positive samples also expressed viral HPV E6 mRNA determined by RT-PCR. Patients with HPV(+) HNSCCs were on average younger than those with HPV(-) tumors (mean age 50.2 vs. 58.7). Statistical analysis using Significance Analysis of Microarrays (SAM) based on HPV status as a supervising parameter resulted in a list of 91 genes that were differentially expressed with statistical significance. Results for a sub-set of these genes were verified by RT-PCR. Genes highly expressed in HPV(+) samples included cell cycle regulators (p16INK4A, p18 and CDK2) and transcription factors (TAF7L, RFC4, RPA2 and TFDP2). The microarray data were also investigated using DIGMap to map genes by chromosomal location. A large number of genes on chromosome 3q24-qter was found to be overrepresented in HPV(+) tumors. Conclusion: The gene expression profile associated with HPV reflects alterations in cell cycle and proliferation signals. Further investigation of differentially expressed genes may reveal the unique pathways in HPV(+) tumors that may explain the different natural history and biological properties of these tumors. These properties may be exploited as a target of novel therapeutic agents in HNSCC treatment. Keywords: HPV, HNSCC, head and neck cancer, human, human papilloma virus
Project description:Introduction: Human Papilloma Virus (HPV) is associated with a subset of head and neck squamous cell carcinoma (HNSCC), between 15% and 35% of HNSCC harboring HPV, almost exclusively of subtype 16. Demographic and exposure differences between HPV-positive (+) and negative (-) HNSCCs suggest that HPV(+) tumors may constitute a subclass with different biology, while clinical differences have also been observed. In this study, gene expression profiles of HPV(+) and (-) tumors were compared to further explore the biological effect of HPV in HNSCC. Methods: Thirty-six HNSCC tumors were analyzed for gene expression using Affymetrix Human 133U Plus 2.0 GeneChip and for HPV using consensus primers for HPV L1, E6 and E7 by PCR and RT-PCR. Results: Eight (22%) of 36 tumors were positive for HPV, all of the HPV 16 subtype, and the HPV positive samples also expressed viral HPV E6 mRNA determined by RT-PCR. Patients with HPV(+) HNSCCs were on average younger than those with HPV(-) tumors (mean age 50.2 vs. 58.7). Statistical analysis using Significance Analysis of Microarrays (SAM) based on HPV status as a supervising parameter resulted in a list of 91 genes that were differentially expressed with statistical significance. Results for a sub-set of these genes were verified by RT-PCR. Genes highly expressed in HPV(+) samples included cell cycle regulators (p16INK4A, p18 and CDK2) and transcription factors (TAF7L, RFC4, RPA2 and TFDP2). The microarray data were also investigated using DIGMap to map genes by chromosomal location. A large number of genes on chromosome 3q24-qter was found to be overrepresented in HPV(+) tumors. Conclusion: The gene expression profile associated with HPV reflects alterations in cell cycle and proliferation signals. Further investigation of differentially expressed genes may reveal the unique pathways in HPV(+) tumors that may explain the different natural history and biological properties of these tumors. These properties may be exploited as a target of novel therapeutic agents in HNSCC treatment. Experiment Overall Design: Patient selection and specimen collection. Thirty-six freshly frozen tumor samples were prospectively collected from patients undergoing surgery or biopsy for HNSCC at the University of North Carolina (UNC) at Chapel Hill (21 patients) and Vanderbilt University (15 patients). All tissues were snap-frozen in liquid nitrogen within 30 minutes of surgical resection or biopsy, and kept at -80oC until further processing. All patients consented to participation in this study under protocols approved by IRB at the two institutions. Experiment Overall Design: HPV detection and DNA sequencing. Tumor DNAs were tested for the presence of HPV DNA using a previously established PCR-based method [11]. This method employs degenerate PCR primers (MY09 and MY11, WD72/76 and WD66/67/154) that are designed to represent highly conserved HPV L1 and E6 sequences present in all major types of HPV. In addition, all HPV-positive samples were also tested with a HPV16-specific PCR for E7 (primer A: 5'-GGA CCG GTC GAT GTA TGT CT-3' and primer B: 3'-TAA AAC CAT CCA TTA CAT CCC G-5'). As a positive control for amplification, primers for beta-globin are included with each sample [11]. Optimal conditions for this combined PCR were determined using DNA from the cervical carcinoma cell line SiHa, which harbors on average 2 copies of HPV16 DNA per cell [11]. Other positive control cell lines were CaSki (HPV16) and HeLa (HPV18). For each case, 200 nanograms of tumor DNA were tested for the presence of HPV DNA. PCR samples which showed amplification products indicating the presence of HPV were purified using PCR purification columns (Qiagen, Valencia, CA) and subjected to bi-directional sequence analysis. In all of such cases, a positive identification of the HPV type could be made. Experiment Overall Design: RNA isolation and DNA microarray analysis. Each tumor was examined by H&E staining to ensure presence of tumor and enriched by macrodissection to achieve a minimum of 70% tumor cells in each preparation. Total RNA was purified from frozen tumors using Qiagen RNeasy Mini Kit according to the manufacturer's recommendations (Qiagen, Valencia, CA) using approximately 10-20 milligram of wet tissue from each sample. Fifty nanograms of the total RNA was amplified using NuGen RNA Amplification kit (NuGen, San Carlos, CA) and labeled ENZO BioArray High Yield RNA Transcript Labeling Kit (Affymetrix, Santa Clara, CA) according to the manufacturer's recommendations. Fifteen micrograms of biotin-labeled aRNA was fragmented and the quality of the RNA was reconfirmed using the Agilent RNA 6000 Nano LabChip Kit and Agilent 2100 bioanalyzer. The fragmented, biotin-labeled aRNA was combined with the hybridization mix and loaded on to the Affymetrix Human Genome U133 plus 2.0 GeneChip. After hybridization, the GeneChip was washed, stained with Strepavidin/phycoerythrin conjugate and biotinylated antibody, and scanned according to the manufacturer's recommendations. The raw microarray data was normalized using Perfect Match software for further statistical analyses.
Project description:Head and neck cancer (HNC) is the fifth most common malignancy worldwide with an annual mortality rate of 200,000. About 90% of HNC can be classified as head and neck squamous cell carcinomas (HNSCC), of which approximately 75% are attributed to alcohol and tobacco consumption and 25% are associated with human papillomavirus (HPV), predominantly HPV16. HPV-associated OPC have better prognosis and a more favorable response to therapy as compared to HPV-negative tumors. Differences in risk factors, age of presentation, clinical behavior and gene expression profiles indicate that HPV-positive and HPV-negative tumors develop via different molecular mechanisms and are biologically distinct. African American (AA) males have a higher incidence of HNC than any other racial/gender group, and a mortality rate almost three-fold that observed in European American (EA) males. Overall, AA patients tend to present with more HPV-negative OPC and have worse prognosis as compared to both HPV-positive and HPV-negative HNSCC in EA patients. Despite the unveiling of differential gene expression patterns, genetic and epigenetic profiles and the compilation of a mutational landscape along with preliminary TCGA data of HPV-related and unrelated HNC, the molecular determinants of the racial disparity in HNC are yet to be identified. This study aimed to compare the gene expression profiles of HPV-negative HNSCC from AA and EA patients, and determine their biological differences. ANALYSIS 2: Two-condition, on-color experiment: African American (AA) vs European American (EA) HPV-negative oropharyngeal squamous cell carcinomas. Biological replicates: 8 African American and 8 European American.
Project description:Head and neck cancer (HNC) is the fifth most common malignancy worldwide with an annual mortality rate of 200,000. About 90% of HNC can be classified as head and neck squamous cell carcinomas (HNSCC), of which approximately 75% are attributed to alcohol and tobacco consumption and 25% are associated with human papillomavirus (HPV), predominantly HPV16. HPV-associated OPC have better prognosis and a more favorable response to therapy as compared to HPV-negative tumors. Differences in risk factors, age of presentation, clinical behavior and gene expression profiles indicate that HPV-positive and HPV-negative tumors develop via different molecular mechanisms and are biologically distinct. African American (AA) males have a higher incidence of HNC than any other racial/gender group, and a mortality rate almost three-fold that observed in European American (EA) males. Overall, AA patients tend to present with more HPV-negative OPC and have worse prognosis as compared to both HPV-positive and HPV-negative HNSCC in EA patients. Despite the unveiling of differential gene expression patterns, genetic and epigenetic profiles and the compilation of a mutational landscape along with preliminary TCGA data of HPV-related and unrelated HNC, the molecular determinants of the racial disparity in HNC are yet to be identified. This study aimed to compare the gene expression profiles of HPV-negative HNSCC from AA and EA patients, and determine their biological differences.
Project description:Rigosertib treatment of head and neck squamous cell cancer The dual pathway inhibitor rigosertib inhibits phosphoinositide 3-kinase (PI3K) pathway activation as well as polo-like kinase 1 (PLK1) activity across a broad spectrum of cancer cell lines. The importance of PIK3CA alterations in head and neck squamous cell cancer (HNSCC) has raised interest in exploring agents targeting PI3K, the product of PIK3CA. The genetic and molecular basis of rigosertib treatment response was investigated in a panel of 16 HNSCC cell lines, and direct patient tumor xenografts from 8 HNSCC patients (4 HPV16-positive). HNSCC cell lines and xenografts were characterized by pathway enrichment gene expression analysis, exon sequencing, gene copy number, western blotting, and IHC. Rigosertib had potent antiproliferative effects on 11 of the 16 HPV- HNSCC cell lines. Treatment sensitivity was confirmed in two cell lines using an orthotopic in vivo xenograft model. Growth reduction after rigosertib treatment was observed in 3/8 HNSCC direct patient tumor lines. The responsive tumor lines carried a combination of a PI3KCA activating event (amplification or mutation) and a p53 inactivating event (either HPV16-mediated or mutation-mediated TP53 inactivation). In this study, we evaluated the in vitro and in vivo efficacy of rigosertib in both HPV+ and HPV- HNSCCs focusing on inhibition of the PI3K pathway. Although consistent inhibition of the PI3K pathway was not evident in HNSCC, we identified a combination of PI3K/TP53 events necessary, but not sufficient for rigosertib-sensitivity. Sixteen HNSCC lines data were profiled at baseline to find differentially expressed genes and pathways sensitive to rigosertib.
Project description:We report a detailed characterization of the HPV16 genome in two brain metastases from OPSCC tumors. The use of a target enrichment strategy followed by next generation sequencing (NGS) provided an effective way to identify viral infection in tumor genome, including internal deletions and insertion sites into the host genome. Applying similar strategies to a larger cohort of HPV+ HNSCC brain metastases could help to identify biomarkers that can predict metastasis and/or identify novel therapeutic options.