Project description:RNA immunoprecipitation assay followed by Next-Generation Sequencing (RIPseq) to identify RNAs bound by DDX20 in testis of postnatal 7-day-old C57BL/6 mice.
Project description:To check the subcellular location-specific HNRNPK binding sites on mouse SINEB2 repeat element, we prepared seCLIP (single-end enhanced crosslinking and immunoprecipitation assay) libraries from SINEUP-GFP transfected nuclear and cytoplasmic fractions from HEK293T/17 cells.
Project description:We generated the hnRNPK-/- RKO cells,and collected the cells at 2 days after transfectd with siRNA. Then,we extracted RNAs and performed next generation sequencing. By comparing sequcing data from control and hnRNPK -/- samples, we profiled the alternative splicing events and gene expression regulated by hnRNPK in CRC.
Project description:Here, we report the first genomic-scale comprehensive characterization of mouse transcripts bound to hnRNPK. hnRNPK binding at the isoform level was evaluated via RNA-sequencing of liver samples obtained from obese and wild-type mouse models. The comparison of hnRNPK co-immunoprecipitated fractions with total RNA fractions in a given mouse model enabled quantitative evaluation of the binding affinity of hnRNPK for thousands of isoforms.
Project description:It is known that CBFB-MYH11, the fusion gene generated by inversion of chromosome 16 in human acute myeloid leukemia, is causative for oncogenic transformation. However, the mechanism by which CBFB-MYH11 initiates leukemogenesis is not clear. Previously published reports showed that CBFB-MYH11 dominantly inhibits RUNX1 and CBFB, and such inhibition has been suggested as the mechanism for leukemogenesis. However, knockin mice expressing Cbfb-MYH11 (Cbfb+/MYH11) showed defects in primitive hematopoiesis not seen in Cbfb null (Cbfb-/-) embryos indicating that Cbfb-MYH11 has repression independent activities as well. To identify gene expression changes associated with this novel activity, we compared the gene expression profile in the blood cells of Cbfb+/MYH11 and Cbfb-/- embryonic day 12.5 (E12.5) embryos with that of their wildtype littermates. Cbfb-MYH11 chimeras were mated to C57/Bl6 females to generate Cbfb+/MYH11 (Cbfb+/MYH11) and Cbfb+/+ (WT) embryos. Cbfb+/- x Cbfb+/- matings were used to generate Cbfb+/+ (Cbfb+/+) and Cbfb-/- (Cbfb-/-) embryos. Blood from 8-10 E12.5 embryos of the same genotype was pooled, and RNA was isolated, labeled, and hybridized to Affymetrix Genechip mouse microarray (430 2.0) chips. 4 chips were used for both the Cbfb+/MYH11 and littermate control samples. 3 chips were used for the Cbfb-/- samples and littermate control samples.
Project description:Dominant RUNX1 inhibition has been proposed as a common pathway for CBF-leukemia. CBFb-SMMHC, a fusion protein in human acute myeloid leukemia (AML), dominantly inhibits RUNX1 largely through its RUNX1 high-affinity binding domain (HABD). We generated knock-in mice expressing CBFb-SMMHC with a HABD deletion, CBFb-SMMHCd179-221. These mice developed leukemia highly efficiently, even though hematopoietic defects associated with Runx1-inhibition were partially rescued. To identify changes in gene expression with the deletion of the HABD, we compared the gene expression profile in leukemia samples from mice expressing CBFb-SMMHCd179-221 with those from mice expressing full length CBFb-SMMHC. Spleen cells were isolated from leukemic knock-in mice with full length CBFb-SMMHC at 2 months after ENU treatment and 2 leukemic CBFb-SMMHCd179-221 expressing chimeric mice at 3 weeks after birth. For each genotype, we performed two independent experiments with 4 Affymetrix GeneChip 430 chips.
Project description:It is known that CBFB-MYH11, the fusion gene generated by inversion of chromosome 16 in human acute myeloid leukemia, is causative for oncogenic transformation. However, the mechanism by which CBFB-MYH11 initiates leukemogenesis is not clear. Previously published reports showed that CBFB-MYH11 dominantly inhibits RUNX1 and CBFB, and such inhibition has been suggested as the mechanism for leukemogenesis. However, knockin mice expressing Cbfb-MYH11 (Cbfb+/MYH11) showed defects in primitive hematopoiesis not seen in Cbfb null (Cbfb-/-) embryos indicating that Cbfb-MYH11 has repression independent activities as well. To identify gene expression changes associated with this novel activity, we compared the gene expression profile in the blood cells of Cbfb+/MYH11 and Cbfb-/- embryonic day 12.5 (E12.5) embryos with that of their wildtype littermates.
Project description:Dominant RUNX1 inhibition has been proposed as a common pathway for CBF-leukemia. CBFb-SMMHC, a fusion protein in human acute myeloid leukemia (AML), dominantly inhibits RUNX1 largely through its RUNX1 high-affinity binding domain (HABD). We generated knock-in mice expressing CBFb-SMMHC with a HABD deletion, CBFb-SMMHCd179-221. These mice developed leukemia highly efficiently, even though hematopoietic defects associated with Runx1-inhibition were partially rescued. To identify changes in gene expression with the deletion of the HABD, we compared the gene expression profile in leukemia samples from mice expressing CBFb-SMMHCd179-221 with those from mice expressing full length CBFb-SMMHC.
Project description:Ewing sarcoma is a highly aggressive tumor characterized by a translocation between members of the FET family of RNA binding proteins and one of several ETS transcription factors, with the most common translocation being EWS-FLI1. EWS-FLI1 leads to changes in gene expression through mechanisms that are not completely understood. We performed RNA sequencing analysis on primary pediatric human mesenchymal progenitor cells (pMPCs) expressing EWS-FLI1 in order to identify novel target genes. This analysis identified lnc277 as a previously uncharacterized long non-coding RNA upregulated by EWS-FLI1 in pMPCs. Inhibiting the expression of lnc277 diminished the ability of Ewing sarcoma cell lines to proliferate and form colonies in soft agar whereas inhibiting lnc277 had no effect on other cell types tested. By analyzing gene expression after shRNA knockdown, we found that both EWS-FLI1 and lnc277 repressed many more genes that they induced and that a significant fraction of EWS-FLI1 repressed targets were also repressed by lnc277. Analysis of primary human Ewing sarcoma RNA sequencing data further supports a role for lnc277 in mediating gene repression. We identified hnRNPK as an RNA binding protein that interacts directly with lnc277. We found a significant overlap in the genes repressed by hnRNPK and those repressed by both EWS-FLI1 and lnc277, suggesting that hnRNPK participates in lnc277 mediated gene repression. Thus, lnc277 is a previously uncharacterized long non-coding RNA downstream of EWS-FLI1 that facilitates the development of Ewing sarcoma via the repression of target genes. Our studies identify a novel mechanism of oncogenesis downstream of a chromosomal translocation and underscore the importance of lncRNA-mediated gene repression as a mechanism of EWS-FLI1 transcriptional regulation. A673 Ewing cells expressing an shRNA targeting hnRNPK or control were subjected to paired end RNA sequencing and compared to shGFP control.