Extensive Splicing across the Saccharomyces cerevisiae genome
Ontology highlight
ABSTRACT: Pre-mRNA splicing is vital for the proper function and regulation of eukaryotic gene expression. Saccharomyces cerevisiae has been used as a model organism for studies of RNA splicing because of the striking conservation of the spliceosome and its catalytic activity. Nonetheless, there are relatively few annotated alternative splice forms, particularly when compared to higher eukaryotes. Here, we describe a method to combine large scale RNA sequencing data to accurately discover novel splice isoforms in Saccharomyces cerevisiae. Using our method, we find extensive evidence for novel splicing of annotated intron-containing genes as well as genes without previously annotated introns and splicing of transcripts that are antisense to annotated genes. By incorporating several mutant strains at varied temperatures, we find conditions which lead to differences in alternative splice form usage. Despite this, every class and category of alternative splicing we find in our datasets is found, often at lower frequency, in wildtype cells under normal growth conditions. Together, these findings show that there is widespread splicing in Saccharomyces cerevisiae.
ORGANISM(S): Saccharomyces cerevisiae
PROVIDER: GSE120497 | GEO | 2024/05/01
REPOSITORIES: GEO
ACCESS DATA