Relation between biofilm and virulence in Vibrio tapetis, a transcriptomic study
Ontology highlight
ABSTRACT: The aim of this study is to compare the transcriptomic profiles of V. tapetis in biofilm culture vs. In planktonic culture and to understand the relation between biofilm and virulence.
Project description:To determine transcriptome differences in Vibrio cholerae when grown as planktonic and biofilm cultures, whole-genome level transcriptional profiling was performed using RNAseq analysis. Transcriptomes of biofim and planktonic cultures were compared in this study.
Project description:The profiles of transcripts from the planktonic cells and biofilm cells of V. vulnificus were compared by using a V. vulnificus whole-genome microarray
Project description:The profiles of transcripts from the planktonic cells and biofilm cells of V. vulnificus were compared by using a V. vulnificus whole-genome microarray Two-condition experiment, planktonic cells vs. biofilm cells. Biological replicates: 3 control, 3 experimental, independently grown and harvested. One replicate per array. For transcriptome analysis, the V. vulnificus whole genome TwinChip, manufactured and kindly provided by the 21C Frontier Microbial Genomics and Applications Center (Daejeon, South Korea), was used.
Project description:Six sequencing libraries was prepared from S. Typhi planktonic cells and biofilm cells using Illumina HiSeq 2500 sequencing to investigate differential gene expression between the two conditions. The transcriptome was processed using Cufflinks and there were a total of 35 up-regulated genes and 29 down-regulated genes log2-fold change values of greater than 2 and less than negative 2. The differentially expressed genes were identified using BLAST and the functions was analysed. This study provides an overview of the genes that are differentially expressed in S. Typhi when it transitions from the planktonic to the biofilm phenotype. The data will provide a basis for further study is necessary to uncover the mechanisms of biofilm formation in S. Typhi and discovery of novel gene functions or pathways associated with the development of the typhoid carrier state. This data may also be used to elucidate the effect of biofilm on the virulence and pathogenicity of S. Typhi in chronic carriers.
Project description:Purpose: Study transcriptome differences between biofilm, planktonic and stationary cultures. Methods: Total mRNA from in vitro cultures was extracted and sequenced using Ion Torrent PGM sequencer. Results: Characteristic transcriptomic profile was observed for biofilm, planktonic and stationary cultures. Biofilm and planktonic were similar biological states. Conclusions: Results suggest that H. parasuis F9 has more active metabolism during biofilm or planktonic growth when compared to stationary culture. Some identified membrane-related genes could play an important role in biofilm life.
Project description:Honey has been widely used against bacterial infection for centuries. Previous studies suggested that honeys in high concentrations inhibited bacterial growth due to the presence of anti-microbial compounds, such as methylglyoxal, hydrogen peroxide, and peptides. In this study, we found that three honeys (acacia, clover, and polyfloral) in a low concentration as below as 0.5% (v/v) significantly suppress virulence and biofilm formation in enterohemorrhagic E. coli O157:H7 affecting the growth of planktonic cells while these honeys do not harm commensal E. coli K-12 biofilm formation. Transcriptome analyses show that honeys (0.5%) markedly repress quorum sensing genes (e.g., AI-2 import and indole biosynthesis), virulence genes (e.g., LEE genes), and curli genes (csgBAC). We found that glucose and fructose in honeys are key compounds to reduce the biofilm formation of E. coli O157:H7 via suppressing curli production, but not that of E. coli K-12. Additionally, we observed the temperature-dependent response of honeys and glucose on commensal E. coli K-12 biofilm formation; honey and glucose increase E. coli K-12 biofilm formation at 37°C, while they decrease E. coli K-12 biofilm formation at 26°C. These results suggest that honey can be a practical tool for reducing virulence and colonization of the pathogenic E. coli O157:H7, while honeys do not harm commensal E. coli community in the human.
Project description:To reveal the transcriptional profiles of Actinobacillus pleuropneumoniae under biofilm and planktonic growth, we established a biofilm-forming culture method and constructed a mutant strain Δpga with defect in biofilm formation. Wild-type and Δpga mutant strains of Actinobacillus pleuropneumoniae strain 4074 were cultured in bottles with shaking for planktonic (WT_PK) and in microplates in static status for biofilm (WT_BF, Δpga), respectively. The bacteria in logarithmic growth period of different culture groups were collected for RNA seq.
Project description:Purpose: Study transcriptome differences between biofilm, planktonic and stationary cultures. Methods: Total mRNA from in vitro cultures was extracted and sequenced using Ion Torrent PGM sequencer. Results: Characteristic transcriptomic profile was observed for biofilm, planktonic and stationary cultures. Biofilm and planktonic were similar biological states. Conclusions: Results suggest that H. parasuis F9 has more active metabolism during biofilm or planktonic growth when compared to stationary culture. Some identified membrane-related genes could play an important role in biofilm life. RNA profiles of 36 hours biofilm or planktonic cultures were generated and compared with stationary culture profile.
Project description:Marine pathogenic bacteria are able to form biofilms on many surfaces, such as mollusc shells, and they can wait for the appropriate opportunity to induce their virulence. Vibrio tapetis can develop such biofilms on the inner surface of shells of the Ruditapes philippinarum clam, leading to the formation of a brown conchiolin deposit in the form of a ring, hence the name of the disease: Brown Ring Disease. The virulence of V. tapetis is presumed to be related to its capacity to form biofilms, but the link has never been clearly established at the physiological or genetic level. In the present study, we used RNA-seq analysis to identify biofilm- and virulence-related genes displaying altered expression in biofilms compared to the planktonic condition. A flow cell system was employed to grow biofilms to obtain both structural and transcriptomic views of the biofilms. We found that 3615 genes were differentially expressed, confirming that biofilm and planktonic lifestyles are very different. As expected, the differentially expressed genes included those involved in biofilm formation, such as motility- and polysaccharide synthesis-related genes. The data show that quorum sensing is probably mediated by the AI-2/LuxO system in V. tapetis biofilms. The expression of genes encoding the Type VI Secretion System and associated exported proteins are strongly induced, suggesting that V. tapetis activates this virulence factor when living in biofilm.