Gain of function DNMT3A mutations cause microcephalic dwarfism and hypermethylation of Polycomb-regulated regions (mouse RRBS)
Ontology highlight
ABSTRACT: DNA methylation and Polycomb are key factors in the establishment of vertebrate cellular identity and fate. Here we report de novo missense mutations in DNMT3A, encoding the DNA methyltransferase DNMT3A, that cause microcephalic dwarfism, a hypocellular disorder of extreme global growth failure. Substitutions in the PWWP domain abrogate binding to the histone modifications H3K36me2/3, and alter DNA methylation in patient cells. Polycomb-associated DNA methylation canyons/valleys, hypomethylated domains encompassing developmental genes, become methylated with concomitant depletion of H3K27me3 and H3K4me3 bivalent marks. Such de novo DNA methylation occurs during differentiation of Dnmt3aW326R pluripotent cells in vitro, and is also evident in Dnmt3aW326R/+ dwarf mice. We therefore propose that the interaction of the DNMT3A PWWP domain with H3K36me2/3 normally limits DNA methylation of polycomb-marked regions. Our findings implicate the interplay between DNA methylation and polycomb at key developmental regulators as a determinant of organism size in mammals.
Project description:DNA methylation and Polycomb are key factors in the establishment of vertebrate cellular identity and fate. Here we report de novo missense mutations in DNMT3A, encoding the DNA methyltransferase DNMT3A, that cause microcephalic dwarfism, a hypocellular disorder of extreme global growth failure. Substitutions in the PWWP domain abrogate binding to the histone modifications H3K36me2/3, and alter DNA methylation in patient cells. Polycomb-associated DNA methylation canyons/valleys, hypomethylated domains encompassing developmental genes, become methylated with concomitant depletion of H3K27me3 and H3K4me3 bivalent marks. Such de novo DNA methylation occurs during differentiation of Dnmt3aW326R pluripotent cells in vitro, and is also evident in Dnmt3aW326R/+ dwarf mice. We therefore propose that the interaction of the DNMT3A PWWP domain with H3K36me2/3 normally limits DNA methylation of polycomb-marked regions. Our findings implicate the interplay between DNA methylation and polycomb at key developmental regulators as a determinant of organism size in mammals.
Project description:DNA methylation and Polycomb are key factors in the establishment of vertebrate cellular identity and fate. Here we report de novo missense mutations in DNMT3A, encoding the DNA methyltransferase DNMT3A, that cause microcephalic dwarfism, a hypocellular disorder of extreme global growth failure. Substitutions in the PWWP domain abrogate binding to the histone modifications H3K36me2/3, and alter DNA methylation in patient cells. Polycomb-associated DNA methylation canyons/valleys, hypomethylated domains encompassing developmental genes, become methylated with concomitant depletion of H3K27me3 and H3K4me3 bivalent marks. Such de novo DNA methylation occurs during differentiation of Dnmt3aW326R pluripotent cells in vitro, and is also evident in Dnmt3aW326R/+ dwarf mice. We therefore propose that the interaction of the DNMT3A PWWP domain with H3K36me2/3 normally limits DNA methylation of polycomb-marked regions. Our findings implicate the interplay between DNA methylation and polycomb at key developmental regulators as a determinant of organism size in mammals.
Project description:DNA methylation and Polycomb are key factors in the establishment of vertebrate cellular identity and fate. Here we report de novo missense mutations in DNMT3A, encoding the DNA methyltransferase DNMT3A, that cause microcephalic dwarfism, a hypocellular disorder of extreme global growth failure. Substitutions in the PWWP domain abrogate binding to the histone modifications H3K36me2/3, and alter DNA methylation in patient cells. Polycomb-associated DNA methylation canyons/valleys, hypomethylated domains encompassing developmental genes, become methylated with concomitant depletion of H3K27me3 and H3K4me3 bivalent marks. Such de novo DNA methylation occurs during differentiation of Dnmt3aW326R pluripotent cells in vitro, and is also evident in Dnmt3aW326R/+ dwarf mice. We therefore propose that the interaction of the DNMT3A PWWP domain with H3K36me2/3 normally limits DNA methylation of polycomb-marked regions. Our findings implicate the interplay between DNA methylation and polycomb at key developmental regulators as a determinant of organism size in mammals.
Project description:DNA methylation and Polycomb are key factors in the establishment of vertebrate cellular identity and fate. Here we report de novo missense mutations in DNMT3A, encoding the DNA methyltransferase DNMT3A, that cause microcephalic dwarfism, a hypocellular disorder of extreme global growth failure. Substitutions in the PWWP domain abrogate binding to the histone modifications H3K36me2/3, and alter DNA methylation in patient cells. Polycomb-associated DNA methylation canyons/valleys, hypomethylated domains encompassing developmental genes, become methylated with concomitant depletion of H3K27me3 and H3K4me3 bivalent marks. Such de novo DNA methylation occurs during differentiation of Dnmt3aW326R pluripotent cells in vitro, and is also evident in Dnmt3aW326R/+ dwarf mice. We therefore propose that the interaction of the DNMT3A PWWP domain with H3K36me2/3 normally limits DNA methylation of polycomb-marked regions. Our findings implicate the interplay between DNA methylation and polycomb at key developmental regulators as a determinant of organism size in mammals.
Project description:DNA methylation and Polycomb are key factors in the establishment of vertebrate cellular identity and fate. Here we report de novo missense mutations in DNMT3A, encoding the DNA methyltransferase DNMT3A, that cause microcephalic dwarfism, a hypocellular disorder of extreme global growth failure. Substitutions in the PWWP domain abrogate binding to the histone modifications H3K36me2/3, and alter DNA methylation in patient cells. Polycomb-associated DNA methylation canyons/valleys, hypomethylated domains encompassing developmental genes, become methylated with concomitant depletion of H3K27me3 and H3K4me3 bivalent marks. Such de novo DNA methylation occurs during differentiation of Dnmt3aW326R pluripotent cells in vitro, and is also evident in Dnmt3aW326R/+ dwarf mice. We therefore propose that the interaction of the DNMT3A PWWP domain with H3K36me2/3 normally limits DNA methylation of polycomb-marked regions. Our findings implicate the interplay between DNA methylation and polycomb at key developmental regulators as a determinant of organism size in mammals. This series contains Infinium methylation data on human blood and fibroblast samples.
Project description:DNA methylation and Polycomb are key factors in the establishment of vertebrate cellular identity and fate. Here we report de novo missense mutations in DNMT3A, encoding the DNA methyltransferase DNMT3A, that cause microcephalic dwarfism, a hypocellular disorder of extreme global growth failure. Substitutions in the PWWP domain abrogate binding to the histone modifications H3K36me2/3, and alter DNA methylation in patient cells. Polycomb-associated DNA methylation canyons/valleys, hypomethylated domains encompassing developmental genes, become methylated with concomitant depletion of H3K27me3 and H3K4me3 bivalent marks. Such de novo DNA methylation occurs during differentiation of Dnmt3aW326R pluripotent cells in vitro, and is also evident in Dnmt3aW326R/+ dwarf mice. We therefore propose that the interaction of the DNMT3A PWWP domain with H3K36me2/3 normally limits DNA methylation of polycomb-marked regions. Our findings implicate the interplay between DNA methylation and polycomb at key developmental regulators as a determinant of organism size in mammals.
Project description:DNA methylation and Polycomb are key factors in the establishment of vertebrate cellular identity and fate. Here we report de novo missense mutations in DNMT3A, encoding the DNA methyltransferase DNMT3A, that cause microcephalic dwarfism, a hypocellular disorder of extreme global growth failure. Substitutions in the PWWP domain abrogate binding to the histone modifications H3K36me2/3, and alter DNA methylation in patient cells. Polycomb-associated DNA methylation canyons/valleys, hypomethylated domains encompassing developmental genes, become methylated with concomitant depletion of H3K27me3 and H3K4me3 bivalent marks. Such de novo DNA methylation occurs during differentiation of Dnmt3aW326R pluripotent cells in vitro, and is also evident in Dnmt3aW326R/+ dwarf mice. We therefore propose that the interaction of the DNMT3A PWWP domain with H3K36me2/3 normally limits DNA methylation of polycomb-marked regions. Our findings implicate the interplay between DNA methylation and polycomb at key developmental regulators as a determinant of organism size in mammals.
Project description:DNA methylation at the 5-position of cytosine (5mC) is a crucial epigenetic mark in regulating biological processes including gene silencing, gene imprinting, and X chromosome inactivation. It has long been questioned how de novo DNA 5mC patterns are established in different genomic regions and whether histone modifications crosstalk to the process. Here, we report a previously uncovered mechanism of histone mark H3K36me2 in recruiting and activating DNMT3A, primarily in the intergenic regions. Our biochemistry studies discovered that H3K36me2 could be specifically bound by DNMT3A PWWP domain and substantially stimulate DNMT3A activity, representing the first example of histone modification in activating DNMT3A activity. Using multiple myeloma model, KMS11, we further found that the genome-wide gain-of-H3K36me2 resulted in global increase of 5mC, primarily in the intergenic regions. Importantly, DNA inhibitor treatment specifically blocked KMS11 growth demonstrating the functional importance of this regulatory pathway.
Project description:DNA methylation at the 5-position of cytosine (5mC) is a crucial epigenetic mark in regulating biological processes including gene silencing, gene imprinting, and X chromosome inactivation. It has long been questioned how de novo DNA 5mC patterns are established in different genomic regions and whether histone modifications crosstalk to the process. Here, we report a previously uncovered mechanism of histone mark H3K36me2 in recruiting and activating DNMT3A, primarily in the intergenic regions. Our biochemistry studies discovered that H3K36me2 could be specifically bound by DNMT3A PWWP domain and substantially stimulate DNMT3A activity, representing the first example of histone modification in activating DNMT3A activity. Using multiple myeloma model, KMS11, we further found that the genome-wide gain-of-H3K36me2 resulted in global increase of 5mC, primarily in the intergenic regions. Importantly, DNA inhibitor treatment specifically blocked KMS11 growth demonstrating the functional importance of this regulatory pathway.
Project description:DNA methylation at the 5-position of cytosine (5mC) is a crucial epigenetic mark in regulating biological processes including gene silencing, gene imprinting, and X chromosome inactivation. It has long been questioned how de novo DNA 5mC patterns are established in different genomic regions and whether histone modifications crosstalk to the process. Here, we report a previously uncovered mechanism of histone mark H3K36me2 in recruiting and activating DNMT3A, primarily in the intergenic regions. Our biochemistry studies discovered that H3K36me2 could be specifically bound by DNMT3A PWWP domain and substantially stimulate DNMT3A activity, representing the first example of histone modification in activating DNMT3A activity. Using multiple myeloma model, KMS11, we further found that the genome-wide gain-of-H3K36me2 resulted in global increase of 5mC, primarily in the intergenic regions. Importantly, DNA inhibitor treatment specifically blocked KMS11 growth demonstrating the functional importance of this regulatory pathway.