RoX RNAs are not required for expressional regulation in Drosophila females
Ontology highlight
ABSTRACT: roX RNAs are involved in the chromosome-wide gene regulation that occurs during dosage compensation in Drosophila. Dosage compensation equalizes expression of X-linked and autosomal genes. Drosophila males increase transcription two-fold from their single X chromosome. This is mediated by the MSL complex, which is composed of the male-specific lethal (MSL) proteins and two noncoding roX RNAs, roX1 and roX2. Upon elimination of both roX transcripts, a global decrease of X-linked gene expression is observed in males. Expression of the genes on the entire 4th chromosome also decreased in the absence of both roX transcripts. roX1 RNA also presents in females in the early stages. To investigate the effect of loss of roX transcripts on gene expression in females, gene expression was analyzed by microarrays in roX1-roX2- female flies. To eliminate inconsistency caused by differences in genetic background, expression of roX1-roX2- females with females of virtually identical genetic background but carrying the [hsp83-roX1+] transgene were compared. Expression of any chromosome did not change in roX1-roX2- females. It was concluded that roX RNAs only effect in males .
Project description:roX RNAs are involved in the chromosome-wide gene regulation that occurs during dosage compensation in Drosophila. Dosage compensation equalizes expression of X-linked and autosomal genes. Drosophila males increase transcription two-fold from their single X chromosome. This is mediated by the MSL complex, which is composed of the male-specific lethal (MSL) proteins and two noncoding roX RNAs, roX1 and roX2. Upon elimination of both roX transcripts, a global decrease of X-linked gene expression is observed in males. Expression of the genes on the entire 4th chromosome also decreased in the absence of both roX transcripts. roX1 RNA also presents in females in the early stages. To investigate the effect of loss of roX transcripts on gene expression in females, gene expression was analyzed by microarrays in roX1-roX2- female flies. To eliminate inconsistency caused by differences in genetic background, expression of roX1-roX2- females with females of virtually identical genetic background but carrying the [hsp83-roX1+] transgene were compared. Expression of any chromosome did not change in roX1-roX2- females. It was concluded that roX RNAs only effect in males . Experiment Overall Design: Total RNA was prepared from groups of 50 third instar larvae by TRIzol (Invitrogen) extraction and purified using the RNeasy kit (Qiagen). Three independent RNA preparations for each genotype served as templates for probe synthesis. These probes were hybridized to Affymetrix Drosophila Genome 2.0 chips (Santa Clara, CA). Genes were filtered for present/absent calls by a PM-MM (Perfect match-Mismatch) comparison. Affymetrix Gene expression data was background corrected, normalized and summarized into a one expression value per replicate sample and probeset using the RMA (robust multi-array average) algorithm. Changes in gene expression were determined by comparing the mean signal intensities of genes on arrays hybridized with roX1- roX2- (mutant) probes to those hybridized with roX1- roX2-; [hsp83-roX1+] (control) probes.
Project description:Drosophila males double transcription of their single X chromosome to equalize X-linked gene expression with females, which carry two X chromosomes. Increased transcription requires the Male-Specific Lethal (MSL) complex. One of the primary functions of the MSL complex is thought to be enrichment of H4Ac16 on the male X chromosome, a modification linked to elevated transcription. The roX1 and roX2 RNAs are essential but redundant components of the MSL complex. Simultaneous removal of both roX RNAs reduces MSL X-localization and leads to ectopic binding of these proteins at autosomal sites and to the chromocenter. Some H4Ac16 accumulates at these ectopic sites in roX1- roX2- males, suggesting the possibility of increased expression. The global effect of roX mutations on gene expression was measured by microarray analysis. We found that expression of the X chromosome was decreased by 26% in roX1- roX2- male larvae, supporting the involvement of roX RNAs in the up-regulation of X-linked genes. This finding is broadly comparable to reports of reduced X chromosome expression following msl2 RNAi knockdown in S2 cells. In spite of strong MSL binding and H4Ac16 accumulation at autosomal sites in roX1- roX2- males, enhanced gene expression could not be detected at these sites by microarray analysis or reverse northern blotting. Thus, failure to compensate X-linked genes, rather than inappropriate up-regulation of autosomal genes at ectopic sites of MSL binding, appears to cause male lethality upon loss of roX RNAs. Keywords: effect of roX1-roX2- mutant on gene expression
Project description:Drosophila males double transcription of their single X chromosome to equalize X-linked gene expression with females, which carry two X chromosomes. Increased transcription requires the Male-Specific Lethal (MSL) complex. One of the primary functions of the MSL complex is thought to be enrichment of H4Ac16 on the male X chromosome, a modification linked to elevated transcription. The roX1 and roX2 RNAs are essential but redundant components of the MSL complex. Simultaneous removal of both roX RNAs reduces MSL X-localization and leads to ectopic binding of these proteins at autosomal sites and to the chromocenter. Some H4Ac16 accumulates at these ectopic sites in roX1- roX2- males, suggesting the possibility of increased expression. The global effect of roX mutations on gene expression was measured by microarray analysis. We found that expression of the X chromosome was decreased by 26% in roX1- roX2- male larvae, supporting the involvement of roX RNAs in the up-regulation of X-linked genes. This finding is broadly comparable to reports of reduced X chromosome expression following msl2 RNAi knockdown in S2 cells. In spite of strong MSL binding and H4Ac16 accumulation at autosomal sites in roX1- roX2- males, enhanced gene expression could not be detected at these sites by microarray analysis or reverse northern blotting. Thus, failure to compensate X-linked genes, rather than inappropriate up-regulation of autosomal genes at ectopic sites of MSL binding, appears to cause male lethality upon loss of roX RNAs. Experiment Overall Design: Total RNA was prepared from groups of 50 third instar larvae by TRIzol (Invitrogen) extraction and purified using the RNeasy kit (Qiagen). Three independent RNA preparations for each genotype served as templates for probe synthesis. Affymetrix Drosophila Genome 2.0 chips were hybridized to these probes (Santa Clara, CA). The affymertrix Drosophila annotation of December 2004 was used to map genes to their cytological locations. Genes were filtered for present/absent calls by a PM-MM (Perfect match- Mismatch) comparison. Autosomal transcripts were normalized on a chip-by-chip basis to bring their median values to 100. The identical degree of adjustment was used to normalize X-linked transcripts. Changes in gene expression were determined by comparing the mean signal intensities of genes on arrays hybridized with roX1SMC17A roX2- probes to those hybridized with roX1+ roX2- probes.
Project description:Long non-coding RNAs are involved in dosage compensation both in mammals and in Drosophila by inducing changes in the X-chromosome chromatin structure. In Drosophila melanogaster, roX1 and roX2 are long non-coding RNAs that together with proteins form the male-specific lethal (MSL) complex, which coats the entire male X-chromosome and mediates dosage compensation by increased transcriptional output. It has been shown that in polytene chromosomes, in absence of both roX1 and roX2, the MSL-complex is decreased on the male X-chromosome and found relocated to the chromocenter, and the 4th chromosome. Here we address the role of roX RNAs in MSL-complex targeting and in the evolution of dosage compensation in Drosophila. We performed ChIP-seq experiments and show that MSL-complex recruitment to high affinity sites (HAS) on the X-chromosome is independent on roX and that the HAS sequence motif is conserved in D. simulans. Additionally, a complete and enzymatically active MSL-complex is recruited to six specific genes on the 4th chromosome. Interestingly, our sequence analysis shows that in the absence of roX RNAs, the MSL-complex has affinity to regions enriched in Hoppel transposable elements and to repeats in general. We hypothesize that roX mutants reveal an ancient targeting of the MSL-complex and propose that the role of roX RNAs is to restrict MSL-complex from binding to heterochromatin.
Project description:In Drosophila, the global increase in transcription from the X chromosome in males to compensate for its monosomy is mediated by the male-specific-lethal complex (MSL-C) consisting of five proteins and two non-coding RNAs, roX1 and roX2. After an initial sequence dependent recognition by the MSL-C of 150-300 high affinity sites, the spreading to the majority of the X-linked genes depends on local MSL-C concentration and active transcription. Here we ask whether any additional RNA species are associated to the MSL-C. No additional roX were found but a strong association was found between the msl2 mRNA and the MSL-C. Based on our results we propose a model in which a non-chromatin associated partial or complete MSL-C titrates newly transcribed msl2 mRNA and thus feed-back regulates the amount of available MSL-C. In total 12 samples; 4 Input files (4 different conditions) with the corresponding 8 RIP samples (2 different antibodies, same 4 conditions as Input)
Project description:In Drosophila melanogaster, two chromosome-specific targeting and regulatory systems have been described. The male-specific lethal (MSL) complex supports dosage compensation by stimulating gene expression from the male X-chromosome and the protein Painting of fourth (POF) specifically targets and stimulates expression from the heterochromatic 4th chromosome. The targeting sites of both systems are well characterized, but the principles underlying the targeting mechanisms have remained elusive. Here we present an original observation, namely that POF specifically targets two loci on the X-chromosome, PoX1 and PoX2 (POF-on-X). PoX1 and PoX2 are located close to the roX1 and roX2 genes, which encode ncRNAs important for the correct targeting and spreading of the MSL-complex. We also found that the targeting of POF to PoX1 and PoX2 is largely dependent on roX expression and identified a high-affinity target region which ectopically recruits POF. The results presented support a model linking the MSL-complex to POF and dosage compensation to regulation of heterochromatin. POF salivary glands ChIP
Project description:In Drosophila, the global increase in transcription from the X chromosome in males to compensate for its monosomy is mediated by the male-specific-lethal complex (MSL-C) consisting of five proteins and two non-coding RNAs, roX1 and roX2. After an initial sequence dependent recognition by the MSL-C of 150-300 high affinity sites, the spreading to the majority of the X-linked genes depends on local MSL-C concentration and active transcription. Here we ask whether any additional RNA species are associated to the MSL-C. No additional roX were found but a strong association was found between the msl2 mRNA and the MSL-C. Based on our results we propose a model in which a non-chromatin associated partial or complete MSL-C titrates newly transcribed msl2 mRNA and thus feed-back regulates the amount of available MSL-C.
Project description:In Drosophila melanogaster, two chromosome-specific targeting and regulatory systems have been described. The male-specific lethal (MSL) complex supports dosage compensation by stimulating gene expression from the male X-chromosome and the protein Painting of fourth (POF) specifically targets and stimulates expression from the heterochromatic 4th chromosome. The targeting sites of both systems are well characterized, but the principles underlying the targeting mechanisms have remained elusive. Here we present an original observation, namely that POF specifically targets two loci on the X-chromosome, PoX1 and PoX2 (POF-on-X). PoX1 and PoX2 are located close to the roX1 and roX2 genes, which encode ncRNAs important for the correct targeting and spreading of the MSL-complex. We also found that the targeting of POF to PoX1 and PoX2 is largely dependent on roX expression and identified a high-affinity target region which ectopically recruits POF. The results presented support a model linking the MSL-complex to POF and dosage compensation to regulation of heterochromatin.
Project description:Long noncoding RNAs known as roX (RNA on X) are crucial for male development in Drosophila, as their loss leads to male lethality from the late larval stages. While roX RNAs are recognized for their role in sex-chromosome dosage compensation, ensuring balanced expression of X-linked genes in both sexes, their potential influence on autosomal gene regulation remains unexplored. Our investigation reveals that roX RNAs not only govern the X chromosome but also target genes on autosomes that lack male-specific lethal (MSL) complex occupancy, together with Polycomb repressive complexes (PRCs). We observed that roX RNAs colocalize with MSL proteins on the X chromosome and PRC components on autosomes. Intriguingly, loss of roX function reduces H4K16ac levels on the X chromosome and H3K27me3 levels on autosomes. Correspondingly, X-linked genes display reduced expression, whereas many autosomal genes exhibit elevated expression upon roX gene deletion. Our findings propose a dual role for roX RNAs: activators of X-linked genes and repressors of autosomal genes, achieved through interactions with MSL and PRC complexes, respectively. This study uncovers the unconventional epigenetic repressive function of roX RNAs.
Project description:Confinement of the X chromosome into a territory for dosage compensation (DC) is a prime example of subnuclear compartmentalization for transcription regulation at the megabase scale. In D. melanogaster, two sex-specific non-coding (nc) RNAs roX1 and roX2 are transcribed from the X chromosome. They associate with the Male-specific lethal (MSL) complex, which by acetylating histone H4 lysine 16 (H4K16ac) confers approximately 2-fold upregulated expression of male X-linked genes. Current models explain X-over-autosome specificity based on the MSL2 subunit recognizing cis-regulatory DNA high-affinity sites (HAS). However, HAS motifs are also found on autosomes, indicating that additional factors have evolved to confer stable association of the MSL complex with the X. Here, we show that the low-complexity C-terminal domain (CTD) of MSL2 renders its recruitment to the X chromosome sensitive to roX ncRNAs. roX-MSL2-CTD form a stably condensated state, and functional analyses in Drosophila and mammalian cells reveal the critical importance of their interplay for DC in vivo. Replacing the CTD of mammalian MSL2 with that from Drosophila and expressing roX in cis is sufficient to nucleate ectopic DC in mammalian cells. Thus, the condensating nature of roX-MSL2CTD is the primary determinant for specific compartmentalization of the X in Drosophila.