Project description:We employed RNA-seq to map the transcriptome of human MRC5 fibroblasts during HCMV infection with AD169. These data will highlight the ways in which the HCMV infection alters RNA levels during infection.
Project description:We employed RNA-seq to map the transcriptome of human MRC5 fibroblasts during HCMV infection with AD169 and AD169-ΔUL26 strains. These data will highlight the ways in which the HCMV UL26 protein alters host gene transcripton during infection.
Project description:Human cytomegalovirus induces a pro-inflammatory monocyte following infection. To begin to address how HCMV induces these rapid changes in infected monocytes, we examined the transcriptome of infected monocytes. Global transcriptional profiling using cDNA microarrays revealed a significant number of pro-inflammatory genes were upregulated within 4 hours post infection. Experiment Overall Design: To begin to globally define the HCMV-induced changes in monocyte function, we performed a transcriptome analysis. Specifically, a cDNA microarray containing 12,626 unique probe sets was utilized to assess the modulation of the monocyte transcriptome at 4 hours post infection. A total of 6 replicates from mock-infected and 6 replicates from HCMV-infected monocytes were analyzed in this study.
Project description:We report the application of RNA sequencing for transcriptome analysis of HCMV infected Human nasal turbinate tissues, enabling the study of tissue responses to HCMV infection
Project description:We have established that human cytomegalovirus (HCMV) infection modulates the biology of target primary blood monocytes, allowing HCMV to use monocytes as 'vehicles' for its systemic spread. HCMV infection of monocytes results in rapid induction of PI(3)K and NF-kB activity. Integrins, which are upstream of the PI(3)K and NF-kB pathways, were shown to be involved in HCMV binding to and entry into fibroblasts, suggesting that receptor-ligand-mediated signaling following viral binding to integrins on monocytes could trigger the functional changes seen in infected monocytes. We now show that integrin engagement and the activation of the integrin/Src-signaling pathway is essential for the induction of HCMV-infected monocyte motility. To investigate how integrin engagement by HCMV triggers monocyte motility, we examined the infected monocyte transcriptome and found that the integrin/Src-signaling pathway regulates the expression of paxillin, which is an important signal transducer in the regulation of actin rearrangement during cell adhesion and movement. Functionally, we observed that paxillin is activated via the integrin/Src-signaling pathway and is required for monocyte motility. Because motility is intimately connected to cellular cytoskeletal organization, a process that is also important in viral entry, we investigated the role paxillin regulation plays in the process of viral entry of monocytes. New results confirmed that HCMV`s ability to enter target monocytes is significantly inhibited in cells deficient in paxillin expression or that had their integrin/Src/paxillin signaling pathway blocked. From our data, HCMV-cell interactions emerge as an essential trigger for the cellular changes that allow for HCMV entry and hematogenous dissemination. Monocytes were mock-infected, HCMV-infected, or pretreated with PP2 inhibitor prior to HCMV infection. There were three samples analyzed per individual replicate. Three replicates are included. comparative studies with a use of the specific Src kinase activity inhibitor
Project description:We report the application of RNA sequencing for transcriptome analysis of HCMV infected tissues, enabling the study of tissue responses to infection
Project description:Placental infection plays a central role in the pathogenesis of congenital human cytomegalovirus (HCMV) infections and is a cause of fetal growth restriction and pregnancy loss. HCMV can replicate in some trophoblast cell types, but it remains unclear how the virus evades antiviral immunity in the placenta and how infection compromises placental development and function. Human trophoblast stem cells (TSCs) can be differentiated into extravillous trophoblasts (EVTs) and syncytiotrophoblasts (STBs). This study assessed the utility of TSCs as a model of HCMV infection in the first trimester placenta. TSCs and TSC-derived EVTs and STBs were infected with HCMV (TB40/Ewt-mCherry). RNA was isolated from infected cells at 24, 48, and 72 hours post-infection and Illumina RNA-Sequencing was used to measure viral and host gene expression. Viral gene expression in TSCs does not follow the kinetic patterns observed during lytic infection in fibroblasts. Canonical antiviral responses were largely not observed in HCMV-infected TSCs and TSC-derived trophoblasts. Rather, infection dysregulated factors involved in cell identity, differentiation, and WNT signaling.