ABSTRACT: We identified 3418 genes transcribed at a level of at least two copies each. We identified many transcripts involved in protein translation, cell maintenance and metabolism, as expected for vegetative cells. The most highly expressed cell signaling genes include ubiquitin, smlA, and nucleotide exchange factors RasGEF F and Ras GEF G. Additionally, we identified many genes previously reported to be expressed only during later stages of development including dutA, actin8, thioredoxin3, culmination specific protein 45D, discoidin II and yelA.
Project description:We identified 3418 genes transcribed at a level of at least two copies each. We identified many transcripts involved in protein translation, cell maintenance and metabolism, as expected for vegetative cells. The most highly expressed cell signaling genes include ubiquitin, smlA, and nucleotide exchange factors RasGEF F and Ras GEF G. Additionally, we identified many genes previously reported to be expressed only during later stages of development including dutA, actin8, thioredoxin3, culmination specific protein 45D, discoidin II and yelA. We isolated total RNA from Dictyostelium amoeba growing in HL5 media with shaking and at a density of 2.4 X 10(7) cells/ml using Ambion RNAqueous isolation kit. We prepared the SAGE library using an Invitrogen kit and being careful to reduce the amount of ditags in the concatemer ligation reaction to 25% of the manufacturer's suggested mass. Concatemers were sequenced at the Molecular Research Core Facility on the campus of Idaho State University using an Applied Biosystems 3100 Genetic Analyzer. We identified SAGE tags by comparison to the Dictyostelium genome sequence available on the dictybase website.
Project description:The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal-fungal lineage after the plant-animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.
Project description:The genetics of sex determination remain mysterious in many organisms, including some that are otherwise well studied. Here we report the discovery and analysis of the mating-type locus of the model organism Dictyostelium discoideum. Three forms of a single genetic locus specify this species' three mating types: two versions of the locus are entirely different in sequence, and the third resembles a composite of the other two. Single, unrelated genes are sufficient to determine two of the mating types, whereas homologs of both these genes are required in the composite type. The key genes encode polypeptides that possess no recognizable similarity to established protein families. Sex determination in the social amoebae thus appears to use regulators that are unrelated to any others currently known.
Project description:The life cycle of Dictyostelium discoideum is proposed to be regulated by expression of small metabolites. Genome sequencing studies have revealed a remarkable array of genes homologous to polyketide synthases (PKSs) that are known to synthesize secondary metabolites in bacteria and fungi. A crucial step in functional activation of PKSs involves their post-translational modification catalyzed by phosphopantetheinyl transferases (PPTases). PPTases have been recently characterized from several bacteria; however, their relevance in complex life cycle of protozoa remains largely unexplored. Here we have identified and characterized two phosphopantetheinyl transferases from D. discoideum that exhibit distinct functional specificity. DiAcpS specifically modifies a stand-alone acyl carrier protein (ACP) that possesses a mitochondrial import signal. DiSfp in contrast is specific to Type I multifunctional PKS/fatty acid synthase proteins and cannot modify the stand-alone ACP. The mRNA of two PPTases can be detected during the vegetative as well as starvation-induced developmental pathway and the disruption of either of these genes results in non-viable amoebae. Our studies show that both PPTases play an important role in Dictyostelium biology and provide insight into the importance of PPTases in lower eukaryotes.
Project description:A key question in cooperation is how to find the right partners and maintain cooperative relationships. This is especially challenging for horizontally transferred bacterial symbionts where relationships must be repeatedly established anew. In the social amoeba Dictyostelium discoideum farming symbiosis, two species of inedible Burkholderia bacteria (Burkholderia agricolaris and Burkholderia hayleyella) initiate stable associations with naive D. discoideum hosts and cause carriage of additional bacterial species. However, it is not clear how the association between D. discoideum and its carried Burkholderia is formed and maintained. Here, we look at precisely how Burkholderia finds its hosts. We found that both species of Burkholderia clones isolated from D. discoideum, but not other tested Burkholderia species, are attracted to D. discoideum supernatant, showing that the association is not simply the result of haphazard engulfment by the amoebas. The chemotactic responses are affected by both partners. We find evidence that B. hayleyella prefers D. discoideum clones that currently or previously carried Burkholderia, while B. agricolaris does not show this preference. However, we find no evidence of Burkholderia preference for their own host clone or for other hosts of their own species. We further investigate the chemical differences of D. discoideum supernatants that might explain the patterns shown above using a mass spectrometry based metabolomics approach. These results show that these bacterial symbionts are able to preferentially find and to some extent choose their unicellular partners. In addition, this study also suggests that bacteria can actively search for and target phagocytic cells, which may help us better understand how bacteria interact with immune systems.
Project description:Huntingtin is a large HEAT repeat protein first identified in humans, where a polyglutamine tract expansion near the amino terminus causes a gain-of-function mechanism that leads to selective neuronal loss in Huntington's disease (HD). Genetic evidence in humans and knock-in mouse models suggests that this gain-of-function involves an increase or deregulation of some aspect of huntingtin's normal function(s), which remains poorly understood. As huntingtin shows evolutionary conservation, a powerful approach to discovering its normal biochemical role(s) is to study the effects caused by its deficiency in a model organism with a short life-cycle that comprises both cellular and multicellular developmental stages. To facilitate studies aimed at detailed knowledge of huntingtin's normal function(s), we generated a null mutant of hd, the HD ortholog in Dictyostelium discoideum. Dictyostelium cells lacking endogenous huntingtin were viable but during development did not exhibit the typical polarized morphology of Dictyostelium cells, streamed poorly to form aggregates by accretion rather than chemotaxis, showed disorganized F-actin staining, exhibited extreme sensitivity to hypoosmotic stress, and failed to form EDTA-resistant cell-cell contacts. Surprisingly, chemotactic streaming could be rescued in the presence of the bivalent cations Ca(2+) or Mg(2+) but not pulses of cAMP. Although hd(-) cells completed development, it was delayed and proceeded asynchronously, producing small fruiting bodies with round, defective spores that germinated spontaneously within a glassy sorus. When developed as chimeras with wild-type cells, hd(-) cells failed to populate the pre-spore region of the slug. In Dictyostelium, huntingtin deficiency is compatible with survival of the organism but renders cells sensitive to low osmolarity, which produces pleiotropic cell autonomous defects that affect cAMP signaling and as a consequence development. Thus, Dictyostelium provides a novel haploid organism model for genetic, cell biological, and biochemical studies to delineate the functions of the HD protein.
Project description:The social amoeba Dictyostelium discoideum is unusual among eukaryotes in having both unicellular and multicellular stages. In the multicellular stage, some cells, called sentinels, ingest toxins, waste and bacteria. The sentinel cells ultimately fall away from the back of the migrating slug, thus removing these substances from the slug. However, some D. discoideum clones (called farmers) carry commensal bacteria through the multicellular stage, while others (called non-farmers) do not. Farmers profit from their beneficial bacteria. To prevent the loss of these bacteria, we hypothesize that sentinel cell numbers may be reduced in farmers, and thus farmers may have a diminished capacity to respond to pathogenic bacteria or toxins. In support, we found that farmers have fewer sentinel cells compared with non-farmers. However, farmers produced no fewer viable spores when challenged with a toxin. These results are consistent with the beneficial bacteria Burkholderia providing protection against toxins. The farmers did not vary in spore production with and without a toxin challenge the way the non-farmers did, which suggests the costs of Burkholderia may be fixed while sentinel cells may be inducible. Therefore, the costs for non-farmers are only paid in the presence of the toxin. When the farmers were cured of their symbiotic bacteria with antibiotics, they behaved just like non-farmers in response to a toxin challenge. Thus, the advantages farmers gain from carrying bacteria include not just food and protection against competitors, but also protection against toxins.
Project description:Sexual reproduction is essential for the maintenance of species in a wide variety of multicellular organisms, and even unicellular organisms that normally proliferate asexually possess a sexual cycle because of its contribution to increased genetic diversity. Information concerning the molecules involved in fertilization is accumulating for many species of the metazoan, plant, and fungal lineages, and the evolutionary consideration of sexual reproduction systems is now an interesting issue. Macrocyst formation in the social amoeba Dictyostelium discoideum is a sexual process in which cells become sexually mature under dark and submerged conditions and fuse with complementary mating-type cells. In the present study, we isolated D. discoideum insertional mutants defective in sexual cell fusion and identified the relevant gene, macA, which encodes a highly glycosylated, 2,041-amino-acid membrane protein (MacA). Although its overall similarity is restricted to proteins of unknown function within dictyostelids, it contains LamGL and discoidin domains, which are implicated in cell adhesion. The growth and development of macA-null mutants were indistinguishable from those of the parental strain. The overexpression of macA using the V18 promoter in a macA-null mutant completely restored its sexual defects. Although the macA gene encoded exactly the same protein in a complementary mating-type strain, it was expressed at a much lower level. These results suggest that MacA is indispensable for gamete interactions in D. discoideum, probably via cell adhesion. There is a possibility that it is controlled in a mating-type-dependent manner.
Project description:The social amoeba Dictyostelium discoideum switches between solitary growth and social fruitification depending on nutrient availability. Under starvation, cells aggregate and form fruiting bodies consisting of spores and altruistic stalk cells. Once cells socially committed, they complete fruitification, even if a new source of nutrients becomes available. This social commitment is puzzling because it hinders individual cells from resuming solitary growth quickly. One idea posits that traits that facilitate premature de-commitment are hindered from being selected. We studied outcomes of the premature de-commitment through forced refeeding. Our results show that when refed cells interacted with non-refed cells, some of them became solitary, whereas a fraction was redirected to the altruistic stalk, regardless of their original fate. The refed cells exhibited reduced cohesiveness and were sorted out during morphogenesis. Our findings provide an insight into a division of labor of the social amoeba, in which less cohesive individuals become altruists.
Project description:BackgroundMany microbial phenotypes are the product of cooperative interactions among cells, but their putative fitness benefits are often not well understood. In the cellular slime mold Dictyostelium discoideum, unicellular amoebae aggregate when starved and form multicellular fruiting bodies in which stress-resistant spores are held aloft by dead stalk cells. Fruiting bodies are thought to be adaptations for dispersing spores to new feeding sites, but this has not been directly tested. Here we experimentally test whether fruiting bodies increase the rate at which spores are acquired by passing invertebrates.ResultsDrosophila melanogaster accumulate spores on their surfaces more quickly when exposed to intact fruiting bodies than when exposed to fruiting bodies physically disrupted to dislodge spore masses from stalks. Flies also ingest and excrete spores that still express a red fluorescent protein marker.ConclusionsMulticellular fruiting bodies created by D. discoideum increase the likelihood that invertebrates acquire spores that can then be transported to new feeding sites. These results thus support the long-hypothesized dispersal benefits of altruism in a model system for microbial cooperation.