AIBP-mediated Cholesterol Efflux Instructs Hematopoietic Stem and Progenitor Cell Fate
Ontology highlight
ABSTRACT: Hypercholesterolemia, the driving force of atherosclerosis, accelerates the expansion and mobilization of hematopoietic stem and progenitor cells (HSPCs). The molecular determinants connecting hypercholesterolemia with hematopoiesis are underexplored. Here we report that a novel somite-derived pro-hematopoietic cue, AIBP, orchestrates HSPC emergence from the hemogenic endothelium, a type of specialized endothelium manifesting hematopoietic potential. Mechanistically, AIBP-mediated cholesterol efflux activates endothelial Srebp2, the master transcription factor for cholesterol biosynthesis, which transactivates Notch and promotes HSPC emergence. Srebp2 inhibition impairs hypercholesterolemia-induced HSPC expansion. Srebp2 activation and Notch upregulation are associated with HSPC expansion in hypercholesterolemic human subjects. Genome-wide ChIP-seq, RNA-seq, and ATAC-seq indicate that Srebp2 trans-regulates Notch pathway genes required for hematopoiesis. Our studies outline a novel AIBP-regulated Srebp2-dependent paradigm for HSPC emergence in development and HPSC expansion in atherosclerotic cardiovascular disease.
ORGANISM(S): Mus musculus
PROVIDER: GSE122204 | GEO | 2019/05/23
REPOSITORIES: GEO
ACCESS DATA