Project description:The goal of this study was to identify transcriptional differences between varying combinations of Tet deletion clones following six days of LIF withdrawal. These libraries were generated from cells under normal culture conditions.
Project description:Tet1, Tet2, and Tet3 encode DNA demethylases that play critical roles during stem cell differentiation and reprogramming to pluripotency. Although all three genes are transcribed in pluripotent cells, little is known about the expression of the corresponding proteins. Here, we tagged all the endogenous Tet family alleles using CRISPR/Cas9, and characterised TET protein expression in distinct pluripotent cell culture conditions. Whereas TET1 is abundantly expressed in both naïve and primed pluripotent cells, TET2 expression is restricted to the naïve state. Moreover, TET2 is expressed heterogeneously in embryonic stem cells (ESCs) cultured in serum/leukemia inhibitory factor, with expression correlating with naïve pluripotency markers. FACS-sorting of ESCs carrying a Tet2Flag-IRES-EGFP reporter demonstrated that TET2-negative cells have lost the ability to form undifferentiated ESC colonies. We further show that TET2 binds to the transcription factor NANOG. We hypothesize that TET2 and NANOG co-localise on chromatin to regulate enhancers associated with naïve pluripotency genes.
Project description:We exploited the methylation genome-scale screening RRBS to correlate the RNA species physically associated with DNMT1 and proximal to the annotated genes to the methylation status of the corresponding loci. Out of 15275 non ambiguous gene loci identified by DNMT1 RIP-Seq, 9436 loci were covered by RRBS. These 9436 loci were clustered according to the fold of specific DNMT1 library peaks enrichment (defined as the ratio of the sum of the area under the curve of specific DNMT1 library peaks covering the gene loci). Genes were then stratified by the expression profile ultimately leading to the epitranscriptome map, a comprehensive map cross-referencing DNMT1-interacting transcripts to (i) DNA methylation and (ii) gene expression profile. Relationship between DNMT1-RNA interactions, DNA methylation and gene expression
Project description:RNA-seq of WT, Tet1-/-, Tet2-/-, Tet1-/-:Tet2-/- (DKO), and Tet1-/-:Tet2-/-:Tet3-/- (TKO) murine embryonic stem cells following six days of LIF withdrawal.
Project description:We exploited the methylation genome-scale screening RRBS to correlate the RNA species physically associated with DNMT1 and proximal to the annotated genes to the methylation status of the corresponding loci. Out of 15275 non ambiguous gene loci identified by DNMT1 RIP-Seq, 9436 loci were covered by RRBS. These 9436 loci were clustered according to the fold of specific DNMT1 library peaks enrichment (defined as the ratio of the sum of the area under the curve of specific DNMT1 library peaks covering the gene loci). Genes were then stratified by the expression profile ultimately leading to the epitranscriptome map, a comprehensive map cross-referencing DNMT1-interacting transcripts to (i) DNA methylation and (ii) gene expression profile.
Project description:The aim of the project was to identify the tissue-specific DNA methylation patterns of selected horse tissues, derived from two germ layers, endodermal (liver and lung) and mesenchymal (cardiac striated muscle) origin. The comparative analysis of DNA methylation patterns of the genome fraction rich in CpG dinucleotides was investigated using Reduced Representation Bisulfite Sequencing (RRBS) technique.
Project description:To test the differences in genome-wide DNA methylation signatures of haploid, diploid and triploid hESCs, we extracted genomic DNA from these cells and performed RRBS.