Characterization of RNA context tumor associated macrophages and related extracellular vesicles [RNA-seq]
Ontology highlight
ABSTRACT: Extracellular vesicles (EVs) are membrane vesicles released by all cell types and contain proteins and non-coding RNAs, which are transported into recipient cells to regulate their signal transduction and functions. Increasing evidence has demonstrated that EV shuttling is an effective means of bio-molecule transportation among various cell types in the tumor microenvironment, and thus plays a critical role in regulating cancer cell biology. Previous studies have shown that TAMs are an important source of extracellular vesicles and the extracellular vesicles released by TAMs can promote the invasiveness of breast cancer cells. In this study, we studied the differential expression of TAM EV and the donor cells.
Project description:Extracellular vesicles (EVs) are membrane vesicles released by all cell types and contain proteins and non-coding RNAs, which are transported into recipient cells to regulate their signal transduction and functions. Increasing evidence has demonstrated that EV shuttling is an effective means of bio-molecule transportation among various cell types in the tumor microenvironment, and thus plays a critical role in regulating cancer cell biology. Previous studies have shown that TAMs are an important source of extracellular vesicles and the extracellular vesicles released by TAMs can promote the invasiveness of breast cancer cells. In this study, we studied the differential expression of TAM EV and the donor cells.
Project description:We newly invented the EV sheet, which is a unique nanofiber paper to capture extracellular vesicles from around 10 uL of bio-fluids. In this study, we investigated miRNA profiles of tumor-surface ascites, serum, and urine using the EV sheet.
Project description:We newly invented the EV sheet, which is a unique nanofiber paper to capture extracellular vesicles from around 10 uL of bio-fluids. In this study, we investigated miRNA profiles of ID8-T6 cells bearing mice.
Project description:Extracellular vesicles (EVs) are key mediators of intercellular communication, with important roles in numerous physiological and pathological processes, including profound effects on bone metabolism. These small membrane-bound vesicles are produced and released in the extracellular environment by virtually all cell types, including cells in the osteogenic lineage such as bone marrow-derived mesenchymal stem cells (MSCs), osteoblasts, osteoclasts and osteocytes. EVs serve as potent carriers of bioactive molecules, such as nucleic acids, proteins, lipids and metabolites, where they can influence recipient cells through fusion with target cell membranes to deliver these functional biomolecules. However, once released, the source cell of the EV is difficult to ascertain with any certainty. To overcome this obstacle, we developed a conditional (e.g. Cre-mediated) mouse model that expresses an EV tag, containing a fusion of CD81 and multiple C-terminal tags, termed the “Snorkel-tag”. By crossing with a Cre of interest, representing a specific cell-type or tissue, the specific EV subpopulations that are released can be isolated using antibody affinity columns. We crossed the CAGS-Snorkel mouse with Prx1- and Ocn-Cre, representing cell-types in the early vs late stages of osteoblast differentiation, isolated EVs from bone marrow plasma, and treated mouse bone marrow stromal cells (mBMSCs) with Prx1-EVs, Ocn-EVs or All-EVs (isolated using a Pan EV Isolation Kit [Miltenyi Biotec]) for 3 days and performed bulk RNA-sequencing. We found unique transcriptional and pathway signatures elicited by the different EV subpopulations in the mBMSCs, suggesting that EVs from diverse sources have distinct biological activities.
Project description:Extracellular vesicles (EVs) are key mediators of intercellular communication, with important roles in numerous physiological and pathological processes, including profound effects on bone metabolism. These small membrane-bound vesicles are produced and released in the extracellular environment by virtually all cell types, including cells in the osteogenic lineage such as bone marrow-derived mesenchymal stem cells (MSCs), osteoblasts, osteoclasts and osteocytes. EVs serve as potent carriers of bioactive molecules, such as nucleic acids, proteins, lipids and metabolites, where they can influence recipient cells through fusion with target cell membranes to deliver these functional biomolecules. However, once released, the source cell of the EV is difficult to ascertain with any certainty. To overcome this obstacle, we developed a conditional (e.g. Cre-mediated) mouse model that expresses an EV tag, containing a fusion of CD81 and multiple C-terminal tags, termed the “Snorkel-tag”. By crossing with a Cre of interest, representing a specific cell-type or tissue, the specific EV subpopulation that is released can be isolated using antibody affinity columns. We crossed the CAGS-Snorkel mouse with Prx1-Cre and Ocn-Cre, representing cell-types in the early vs late stages of osteoblast differentiation. Isolation of Prx1-EVs and Ocn-EVs was performed from the mouse bone marrow plasma. We performed miRNA-sequencing to determine the specific miRNA cargo in these different EV subpopulations and found miRNAs involved in bone metabolism and function to be expressed, some of which are enriched in the Ocn-EVs. In summary, the CAGS-Snorkel mouse model will be useful in the characterization of EVs from diverse cell- and tissue-types in the mouse.
Project description:Compared to whole serum miRNAs, miRNAs in serum small extracellular vesicles (sEVs) are well protected form RNA enzymes, thus provide a consistent source of miRNA for disease biomarker detection. Serum sEVs and their miRNA cargos released by injured liver cells could be promising biomarkers for diagnosis of liver diseases. We were very interested to find out the effects of liver injury on serum extracellular vesicles as well as the small RNA components they transported, if there is any difference between acute and chronic injury. Study in this regard will help us to identify new serum biomarkers for liver injury, and to find out if there are specific markers for acute or chronic liver injury. To identify potential biomarker for liver injury based on serum sEVs miRNAs, we established the carbon tetrachloride (CCL4) induced acute and chronic liver injury mice model, and examined the dynamic changes of small RNA components, especially miRNAs, in serum sEVs.
Project description:Membrane vesicles released by neoplastic cells into extracellular medium contain potential of carrying arrays of oncogenic molecules including proteins and microRNAs (miRNA). Extracellular (exosome-like) vesicles play a major role in cell-to-cell communication. Thus, the characterization of miRNAs of exosome-like vesicles is imperative in clarifying intercellular signaling as well as identifying disease markers. microarray analysis identified several oncogenic miRNA between the two types vesicles.
Project description:Under physiological conditions, extracellular vesicles (EVs) are present simultaneously in the extracellular compartment together with cytokines. Thus, we hypothesized that EVs in combination with cytokines induce different responses of monocyte cells compared to EVs or cytokines alone. Human monocyte U937 cells were incubated with EV-containing or EV-free CCRF human T-cell supernatant, with or without the addition of TNF. U937 cells cultured in EV-free supernatant, supernatant containing CCRF t-cell derived EVs, TNF or both. Each treatment option was measured in 3 replicates.
Project description:Background: We have found that extracellular vesicles (EV) secreted by embryonic stem cell-derived cardiovascular progenitor cells (hES-CPg) recapitulate the therapeutic effects of these cells in a model of chronic heart failure (CHF). Objectives: Our goal was to test other cellular sources of EV and to explore their mechanism of action.
Project description:Background: We have found that extracellular vesicles (EV) secreted by embryonic stem cell-derived cardiovascular progenitor cells (hES-CPg) recapitulate the therapeutic effects of these cells in a model of chronic heart failure (CHF). Objectives: Our goal was to test other cellular sources of EV and to explore their mechanism of action.