Project description:Microarray Analyses of Newborn Mouse lens lacking HSF4. Hsf4 is essential for lens development. Newborn Mouse lens expression pattern of HSF4-/- and wildtype.
Project description:Differential expression of HSF4 in null newborn mouse and wildtype lenses was examined to identify putative downstream targets of HSF4. To examine roles of Brg1 in mouse lens development, a dnBrg1 transgenic construct was expressed using the lens-specific aA-crystallin promoter in postmitotic lens fiber cells. Morphological studies revealed abnormal lens fiber cell differentiation in transgenic lenses resulting in cataract. Electron microscopic studies showed abnormal lens suture formation and incomplete karyolysis (denucleation) of lens fiber cells. To identify genes regulated by Brg1, RNA expression profiling was performed in E15.5 embryonic wild type and dnBrg1 transgenic lenses. In addition, comparisons between differentially expressed genes in dnBrg1 transgenic, Pax6 heterozygous, and Hsf4 homozygous lenses identified multiple genes co-regulated by Brg1, Hsf4 and Pax6. Among them DNase IIb, a key enzyme required for lens fiber cell denucleation, was found downregulated in each of the Pax6, Brg1 and Hsf4 model systems. Lens-specific deletion of Brg1 using conditional gene targeting demonstrated that Brg1 was required for lens fiber cell differentiation and indirectly for retinal development but was not essential for lens lineage formation. Keywords: Differential mRNA Expression Three biological replicate experiments were performed with HSF null and wildtype lenses.
Project description:Differential expression of HSF4 in null newborn mouse and wildtype lenses was examined to identify putative downstream targets of HSF4. To examine roles of Brg1 in mouse lens development, a dnBrg1 transgenic construct was expressed using the lens-specific aA-crystallin promoter in postmitotic lens fiber cells. Morphological studies revealed abnormal lens fiber cell differentiation in transgenic lenses resulting in cataract. Electron microscopic studies showed abnormal lens suture formation and incomplete karyolysis (denucleation) of lens fiber cells. To identify genes regulated by Brg1, RNA expression profiling was performed in E15.5 embryonic wild type and dnBrg1 transgenic lenses. In addition, comparisons between differentially expressed genes in dnBrg1 transgenic, Pax6 heterozygous, and Hsf4 homozygous lenses identified multiple genes co-regulated by Brg1, Hsf4 and Pax6. Among them DNase IIb, a key enzyme required for lens fiber cell denucleation, was found downregulated in each of the Pax6, Brg1 and Hsf4 model systems. Lens-specific deletion of Brg1 using conditional gene targeting demonstrated that Brg1 was required for lens fiber cell differentiation and indirectly for retinal development but was not essential for lens lineage formation. Keywords: Differential mRNA Expression
Project description:Cellular differentiation is marked by temporally and spatially coordinated gene expression regulated at multiple levels within the nucleus. Sequence-specific DNA-binding transcription factor CTCF EDIT. Topologically associated domains (TADs). Using Hi-C, we investigated changes in chromatin organization between newborn (P0.5) mouse lens fiber and epithelium and compared them to embryonic stem (ES) cells. Compartments A and B. Using ChIP-seq, we determined localization of CTCF in both lens tissues Formation of lens-specific TADs is demonstrated via comparative studies of chromatin at Pax6, Prox1, Gata3, Hsf4, and crystallin loci (to be updated) between lens and ES cell nuclei. Our study has generated the first data on nuclear organization in lens epithelium and lens fibers and directly compared these data with ES cells.
Project description:Genome-wide approach to identify the cell-autonomous role of Brg1 in lens fiber cell terminal differentiation. To examine roles of Brg1 in mouse lens development, a dnBrg1 transgenic construct was expressed using the lens-specific alphaA-crystallin promoter in postmitotic lens fiber cells. Morphological studies revealed abnormal lens fiber cell differentiation in transgenic lenses resulting in cataract. Electron microscopic studies showed abnormal lens suture formation and incomplete karyolysis (denucleation) of lens fiber cells. To identify genes regulated by Brg1, RNA expression profiling was performed in E15.5 embryonic wild type and dnBrg1 transgenic lenses. In addition, comparisons between differentially expressed genes in dnBrg1 transgenic, Pax6 heterozygous, and Hsf4 homozygous lenses identified multiple genes co-regulated by Brg1, Hsf4 and Pax6. Among them DNase IIbeta, a key enzyme required for lens fiber cell denucleation, was found downregulated in each of the Pax6, Brg1 and Hsf4 model systems. Lens-specific deletion of Brg1 using conditional gene targeting demonstrated that Brg1 was required for lens fiber cell differentiation and indirectly for retinal development but was not essential for lens lineage formation. Wild type and dnBrg1 transgenic lenses, 4 biological replicates each
Project description:Genome-wide approach to identify the cell-autonomous role of Brg1 in lens fiber cell terminal differentiation. To examine roles of Brg1 in mouse lens development, a dnBrg1 transgenic construct was expressed using the lens-specific alphaA-crystallin promoter in postmitotic lens fiber cells. Morphological studies revealed abnormal lens fiber cell differentiation in transgenic lenses resulting in cataract. Electron microscopic studies showed abnormal lens suture formation and incomplete karyolysis (denucleation) of lens fiber cells. To identify genes regulated by Brg1, RNA expression profiling was performed in E15.5 embryonic wild type and dnBrg1 transgenic lenses. In addition, comparisons between differentially expressed genes in dnBrg1 transgenic, Pax6 heterozygous, and Hsf4 homozygous lenses identified multiple genes co-regulated by Brg1, Hsf4 and Pax6. Among them DNase IIbeta, a key enzyme required for lens fiber cell denucleation, was found downregulated in each of the Pax6, Brg1 and Hsf4 model systems. Lens-specific deletion of Brg1 using conditional gene targeting demonstrated that Brg1 was required for lens fiber cell differentiation and indirectly for retinal development but was not essential for lens lineage formation.
Project description:Genome-wide approach to identify the cell-autonomous role of Snf2h in lens fiber cell terminal differentiation. Differential gene expression was analyzed in Snf2h lens-conditional knockout and wildtype newborn mouse eyeballs, with subsequent comparison of this data with the Brg1 lens-conditional knockout mouse eyes expression data (GSE25168). Four biological replicate experiments were performed.
Project description:Genome-wide approach to identify the cell-autonomous role of Snf2h in lens fiber cell terminal differentiation. Differential gene expression was analyzed in Snf2h lens-conditional knockout and wildtype newborn mouse eyeballs, with subsequent comparison of this data with the Brg1 lens-conditional knockout mouse eyes expression data (GSE25168).