Project description:Branching coral species like the Caribbean Acroporids are long lived and reproduce asexually via breakage of branches. Fragmentation is the dominant mode of local population maintenance for these corals across much of their range. Thus, large genets with many member ramets (colonies) are common. Each of the ramets experiences different microenvironments, especially with respect to light and water flow. Here, we investigate whether colonies that are members of the same genet have different epigenomes because of differences in their microenvironments. The Florida Keys experienced a large- scale coral bleaching event in 2014-2015 caused by high water temperatures. During the event, ramets of the same coral genet bleached differently. Previous work had shown that this was unlikely to be due to their eukaryotic algal symbionts (Symbiodinium ‘fitti’) because each genet of this coral species typically harbors a single strain of S. ‘fitti’. Characterization of the microbiome via 16S tag sequencing did not provide evidence for a central role of microbiome variation in determining bleaching response. Instead, epigenetic changes were significantly correlated with the host’s genetic background, the position of the sampled polyps within the colonies (e.g. tip versus base of colony), and differences in the colonies’ condition during the bleaching event. We conclude that microenvironmental differences in growing conditions led to long-term changes in the way the ramets methylated their genomes and thus to a differential bleaching response.
Project description:Branching coral species like the Caribbean Acroporids are long lived and reproduce asexually via breakage of branches. Fragmentation is the dominant mode of local population maintenance for these corals across much of their range. Thus, large genets with many member ramets (colonies) are common. Each of the ramets experiences different microenvironments, especially with respect to light and water flow. Here, we investigate whether colonies that are members of the same genet have different epigenomes because of differences in their microenvironments. The Florida Keys experienced a large- scale coral bleaching event in 2014-2015 caused by high water temperatures. During the event, ramets of the same coral genet bleached differently. Previous work had shown that this was unlikely to be due to their eukaryotic algal symbionts (Symbiodinium ‘fitti’) because each genet of this coral species typically harbors a single strain of S. ‘fitti’. Characterization of the microbiome via 16S tag sequencing did not provide evidence for a central role of microbiome variation in determining bleaching response. Instead, epigenetic changes were significantly correlated with the host’s genetic background, the position of the sampled polyps within the colonies (e.g. tip versus base of colony), and differences in the colonies’ condition during the bleaching event. We conclude that microenvironmental differences in growing conditions led to long-term changes in the way the ramets methylated their genomes and thus to a differential bleaching response.
Project description:Reef-building corals typically live close to the upper limits of their thermal tolerance and even small increases in summer water temperatures can lead to bleaching and mortality. Projections of coral reef futures based on forecasts of ocean temperatures indicate that by the end of this century, corals will experience their current thermal thresholds annually, which would lead to the widespread devastation of coral reef ecosystems. Here, we use skeletal cores of long-lived Porites corals collected from 14 reefs across the northern Great Barrier Reef, the Coral Sea, and New Caledonia to evaluate changes in their sensitivity to heat stress since 1815. High-density 'stress bands'-indicative of past bleaching-first appear during a strong pre-industrial El Niño event in 1877 but become significantly more frequent in the late twentieth and early twenty-first centuries in accordance with rising temperatures from anthropogenic global warming. However, the proportion of cores with stress bands declines following successive bleaching events in the twenty-first century despite increasing exposure to heat stress. Our findings demonstrate an increase in the thermal tolerance of reef-building corals and offer a glimmer of hope that at least some coral species can acclimatize fast enough to keep pace with global warming.
Project description:Transcriptional responses to heat stress were assayed in early life-history stages of 11 crosses between and amongst Acropora tenuis colonies originating from reefs along the Great Barrier Reef. We identified a single nucleotide polymorphism outlier (Fst=0.89) between populations in the unannotated gene Acropora25324, which exhibited constitutively higher gene expression in populations with dams originating from Curd reef, a far north, warm adapted inshore reef, suggesting an important role of this gene in adaptation to warmer environments. Further, juveniles exposed to heat and in symbiosis with heat-evolved Symbiodiniaceae displayed intermediate transcriptional responses between its progenitor taxa (Cladocopium goreaui) and the more stress tolerant Durusdinium trenchii, indicating that the development of heat tolerance acquisition is potentially a conserved evolutionary process in Symbiodiniaceae. These findings reveal the underlying mechanisms, and for the first time, their relative contribution, of coral responses to climate change and provide a foundation for optimizing conservation methods like assistant gene flow.
Project description:Atlantic reef-building corals and coral reefs continue to experience extensive decline due to increased stressors related to climate change, disease, pollution, and numerous anthropogenic threats. To understand the impact of ocean warming and reef loss on the estimated extinction risk of shallow water Atlantic reef-building scleractinians and milleporids, all 85 valid species were reassessed under the IUCN Red List Categories and Criteria, updating the previous Red List assessment of Atlantic corals published in 2008. For the present assessment, individual species declines were estimated based on the modeled coral cover loss (1989-2019) and projected onset of annual severe bleaching events (2020-2050) across the Atlantic. Species traits were used to scale species' relative vulnerability to the modeled cover declines and forecasted bleaching events. The updated assessments place 45.88%-54.12% of Atlantic shallow water corals at an elevated extinction risk compared to the previous assessments conducted in 2008 (15.19%-40.51%). However, coral cover loss estimates indicate an improvement in reef coverage compared to the historic time-series used for the 2008 assessments. Based on this, we infer that, although remaining dangerously high, the rate of Atlantic reef coral cover decline has surprisingly slowed in recent decades. However, based on modeled projections of sea-surface temperature that predict the onset of annual severe bleaching events within the next 30 years, we listed 26 (out of 85) species as Critically Endangered in the IUCN Red List. Each of these species had previously been listed under a lower threatened category and this result alone highlights the severe threat future bleaching events pose to coral survival and the reef ecosystems they support.
Project description:Predicting demographic rates is a critical part of forecasting the future of ecosystems under global change. Here, we test if growth rates can be predicted from morphological traits for a highly diverse group of colonial symbiotic organisms: scleractinian corals. We ask whether growth is isometric or allometric among corals, and whether most variation in coral growth rates occurs at the level of the species or morphological group. We estimate growth as change in planar area for 11 species, across five morphological groups and over 5 years. We show that coral growth rates are best predicted from colony size and morphology rather than species. Coral size follows a power scaling law with a constant exponent of 0.91. Despite being colonial organisms, corals have consistent allometric scaling in growth. This consistency simplifies the task of projecting community responses to disturbance and climate change.
Project description:Acclimatization through phenotypic plasticity represents a more rapid response to environmental change than adaptation and is vital to optimize organisms’ performance in different conditions. Generally, animals are less phenotypically plastic than plants, but reef-building corals exhibit plant-like properties. They are light-dependent with a sessile and moddular construction that facilitates rapid morphological changes within their lifetime. We induced phenotypic changes by altering light exposure in a reciprocal transplant experiment and found that coral plasticity is a colony trait emerging from comprehensive morphological and physiological changes within the colony. Plasticity in skeletal features optimized coral light harvesting and utilization and paralleled with significant methylome and transcriptome modifications. Network-associated responses resulted in the identification of hub genes and clusters associated to the change in phenotype: inter-partner recognition and phagocytosis, soft tissue growth and biomineralization. Furthermore, we identified hub genes putatively involved in animal photoreception-phototransduction. These findings fundamentally advance our understanding of how reef-building corals repattern the methylome and adjust a phenotype, revealing an important role of light sensing by the coral animal to optimize photosynthetic performance of the symbionts.