Other

Dataset Information

0

Resetting histone modifications during human parental-to-zygotic transition


ABSTRACT: Histone modifications regulate gene expression and development. To address how they are reprogrammed in human early development, we investigated key histone marks in human oocytes and early embryos. Unlike that in mouse, the permissive mark H3K4me3 largely exhibits canonical patterns at promoters in human oocytes. After fertilization, pre-zygotic genome activation (ZGA) embryos acquire permissive chromatin and widespread H3K4me3 in CpG-rich regulatory regions. By contrast, the repressive mark H3K27me3 undergoes global depletion. CpG-rich regulatory regions then resolve to either active or repressed states upon ZGA, followed by subsequent restoration of H3K27me3 at developmental genes. Finally, through combining chromatin and transcriptome maps, we revealed transcription circuitry and asymmetric H3K27me3 patterning during early lineage specification. Collectively, our data unveil a priming phase connecting human parental-to-zygotic epigenetic transition.

ORGANISM(S): Mus musculus Homo sapiens

PROVIDER: GSE124718 | GEO | 2019/07/05

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2018-05-03 | GSE101571 | GEO
2011-12-02 | E-GEOD-27314 | biostudies-arrayexpress
2023-05-23 | PXD041399 | Pride
2011-12-02 | GSE27314 | GEO
2022-01-04 | GSE168361 | GEO
2022-01-04 | GSE168360 | GEO
2022-01-04 | GSE168359 | GEO
2022-01-17 | GSE167986 | GEO
2022-01-17 | GSE167985 | GEO
2022-01-17 | GSE167984 | GEO