MTORC1 feedback to AKT modulates MiT/TFE-driven lysosomal biogenesis and EGFR degradation
Ontology highlight
ABSTRACT: MiT/TFE transcriptional activity controls lysosomal biogenesis and is negatively regulated by the nutrient sensor mTORC1. Some tumors bypass this regulatory circuit via genetic alterations that drive MiT/TFE expression and activity; however, the mechanisms by which cells with intact or constitutive mTORC1 signaling maintain lysosomal catabolism remain to be elucidated. Using the murine epidermis as a model system, we find that epidermal Tsc1 deletion results in a wavy hair phenotype due to increased EGFR degradation. Unexpectedly, constitutive mTORC1 activation increases lysosomal content via up-regulated expression and activity of MiT/TFEs, while genetic or prolonged pharmacologic mTORC1 inactivation has the reverse effect. This paradoxical up-regulation of lysosomal biogenesis by mTORC1 is mediated by feedback inhibition of AKT, and a resulting suppression of AKT-induced MiT/TFE proteasomal degradation. These data suggest that oncogenic feedback loops work to restrain or maintain cellular lysosomal content during chronically inhibited or constitutively active mTORC1 signaling respectively, and reveal a mechanism by which mTORC1 regulates upstream receptor tyrosine kinase signaling.
ORGANISM(S): Mus musculus
PROVIDER: GSE124754 | GEO | 2020/04/14
REPOSITORIES: GEO
ACCESS DATA