Effects of diet and age on canine skeletal muscle (biceps femoris) gene expression
Ontology highlight
ABSTRACT: Aging animals display a decline in a multitude of physical and physiological functions, including muscle function and strength. Muscle gene expression in dogs has been evaluated for a few select genes under pathogenic or varying dietary conditions, but global gene expression profiles of aged animals has not been performed. Because the mechanisms contributing to age-related decline in muscle function are poorly defined, we used canine microarrays to compare gene expression profiles of muscle tissue from geriatric and young adult dogs. Skeletal muscle (biceps femoris) samples were collected from 6 geriatric (12 yr-old) and 6 young adult (1 yr-old) female beagles after being fed one of two diets (animal protein-based versus plant-protein based) for 12 months. RNA samples were hybridized to Affymetrix GeneChip Canine Genome Arrays. Statistical analyses indicated that age had the greatest impact on gene expression, with 262 genes differentially expressed in geriatric dogs. Although not as robust as age, diet affected mRNA abundance of 22 genes. The effect of age was most notable in genes related to metabolism, cell cycle and cell development, and transcription function, with all of these functional groups being predominantly down-regulated in older animals. The effect of diet on gene expression was mostly limited to the geriatric animals, but interactions between age and diet do not allow for a clear-cut pattern of gene expression to be observed. Keywords: age; diet
ORGANISM(S): Canis lupus familiaris
PROVIDER: GSE12502 | GEO | 2008/08/21
SECONDARY ACCESSION(S): PRJNA113247
REPOSITORIES: GEO
ACCESS DATA