The Nuclear Matrix Protein SAFB Cooperates with Major Satellite RNAs to Stabilize Heterochromatin Architecture Partially through Phase Separation
Ontology highlight
ABSTRACT: Interphase chromatin is hierarchically organized into higher-order architectures that are essential for gene functions, yet the biomolecules that regulate these 3D architectures remain poorly understood. Here, we show that scaffold attachment factor B (SAFB), a nuclear matrix (NM)-associated protein with RNA-binding functions, modulates chromatin condensation and stabilizes heterochromatin foci in mouse cells. SAFB interacts via its R/G-rich region with heterochromatin-associated repeat transcripts such as major satellite RNAs, which promote the phase sep- aration driven by SAFB. Depletion of SAFB leads to changes in 3D genome organization, including an increase in interchromosomal interactions adjacent to pericentromeric heterochromatin and a decrease in genomic compartmentalization, which could result from the decondensation of pericentromeric heterochromatin. Collectively, we reveal the integrated roles of NM-associated proteins and repeat RNAs in the 3D organization of heterochromatin, which may shed light on the molecular mechanisms of nuclear architecture organization.
ORGANISM(S): Mus musculus
PROVIDER: GSE125037 | GEO | 2019/11/19
REPOSITORIES: GEO
ACCESS DATA