Expression data from pancreatic islets of prolactin receptor null pregnant mice
Ontology highlight
ABSTRACT: Pancreatic islets adapt to the increase in insulin demand during pregnancy by up-regulating beta cell proliferation, insulin synthesis, and lowering the threshold of glucose-stimulated insulin secretion. In vitro studies suggest that pregnancy hormones, such as placental lactogens and prolactin, both act through the prolactin receptor, are required for these adaptation. Furhtermore, we found that transgenic mice with heterogenous prolactin receptor null mutation are glucose intolerant, with a lower beta-cell mass and lower insulin levels. The goal here is to discover novel targets of prolactin receptor signaling in pancreatic beta cells during pregnancy.
Project description:Pancreatic islets adapt to insulin resistance of pregnancy by up regulating beta-cell proliferation and increase insulin secretion. Previously, we found that prolactin receptor (Prlr) signaling is important for this process, as heterozygous prolactin receptor-null (Prlr+/-) mice are glucose intolerant, had a lower number of beta cells and lower serum insulin levels than wild type mice during pregnancy. However, since Prlr expression is ubiquitous, to determine its beta-cell-specific effects, we generated a transgenic mouse with a floxed Prlr allele under the control of an inducible promoter, i.e. bPrlR-/- mice, allowing conditional deletion of Prlr from beta cells in adult mice. In this study, we found that beta-cell-specific Prlr reduction resulted in elevated blood glucose during pregnancy. Similar to our previous finding in mice with global Prlr reduction, beta-cell-specific Prlr loss led to a lower beta-cell mass and a lower in vivo insulin level during pregnancy. However, these islets do not have an intrinsic insulin secretion defect when tested in vitro. Interestingly, when we compared the islet gene expression profile, using islets isolated from mice with global versus beta-cell-specific Prlr reduction, we found differences in expression of genes that regulate apoptosis, synaptic vesicle function and neuronal development. Indeed, islets from pregnant Prlr+/- mice are more susceptible glucolipotoxicity than bPrlR+/- islets. These observations suggest that Prlr has both cell-autonomous and non-cell-autonomous effect on beta cells, beyond its regulation of pro-proliferative genes.
Project description:During pregnancy, the energy requirements of the fetus impose changes in maternal metabolism. Increasing insulin resistance in the mother maintains nutrient flow to the growing fetus, while prolactin and placental lactogen counterbalance this resistance and prevent maternal hyperglycemia by driving expansion of the maternal population of insulin-producing beta-cells. However, the exact mechanisms by which the lactogenic hormones drive beta-cell expansion remain uncertain. Here we show that serotonin acts downstream of lactogen signaling to drive beta-cell proliferation. Serotonin synthetic enzyme Tph1 and serotonin production increased sharply in beta-cells during pregnancy or after treatment with lactogens in vitro. Inhibition of serotonin synthesis by dietary tryptophan restriction or Tph inhibition blocked beta-cell expansion and induced glucose intolerance in pregnant mice without affecting insulin sensitivity. Expression of the Gq-linked serotonin receptor Htr2b in maternal islets increased during pregnancy and normalized just prior to parturition, while expression of the Gi-linked receptor Htr1d increased at the end of pregnancy and postpartum. Blocking Htr2b signaling in pregnant mice also blocked beta-cell expansion and caused glucose intolerance. These studies reveal an integrated signaling pathway linking beta-cell mass to anticipated insulin need during pregnancy. Modulators of this pathway, including medications and diet, may affect the risk of gestational diabetes. Analysis of poly(A)+ RNA from 3 biological replicates of pancreatic islets isolated from normal female and pregnant female mice
Project description:During pregnancy, the energy requirements of the fetus impose changes in maternal metabolism. Increasing insulin resistance in the mother maintains nutrient flow to the growing fetus, while prolactin and placental lactogen counterbalance this resistance and prevent maternal hyperglycemia by driving expansion of the maternal population of insulin-producing beta-cells. However, the exact mechanisms by which the lactogenic hormones drive beta-cell expansion remain uncertain. Here we show that serotonin acts downstream of lactogen signaling to drive beta-cell proliferation. Serotonin synthetic enzyme Tph1 and serotonin production increased sharply in beta-cells during pregnancy or after treatment with lactogens in vitro. Inhibition of serotonin synthesis by dietary tryptophan restriction or Tph inhibition blocked beta-cell expansion and induced glucose intolerance in pregnant mice without affecting insulin sensitivity. Expression of the Gq-linked serotonin receptor Htr2b in maternal islets increased during pregnancy and normalized just prior to parturition, while expression of the Gi-linked receptor Htr1d increased at the end of pregnancy and postpartum. Blocking Htr2b signaling in pregnant mice also blocked beta-cell expansion and caused glucose intolerance. These studies reveal an integrated signaling pathway linking beta-cell mass to anticipated insulin need during pregnancy. Modulators of this pathway, including medications and diet, may affect the risk of gestational diabetes.
Project description:ABSTRACT: The human growth hormone (hGH) minigene is frequently used in the derivation of transgenic mouse lines to enhance transgene expression. Although this minigene is present in the transgenes as a secondcistron, and thus not thought to be expressed, we found that three commonly used lines, Pdx1-CreLate, RIP-Cre, and MIP-GFP, each expressed significant amounts of hGH in pancreatic islets. Locally secreted hGH binds to prolactin receptors on β cells, activates STAT5 signaling, and induces pregnancy-like changes in gene expression, thereby augmenting pancreatic β cell mass and insulin content. In addition, islets of Pdx1-CreLate mice have lower GLUT2 expression and reduced glucose-induced insulin release and are protected against the β cell toxin streptozotocin. These findings may be important when interpreting results obtained when these and other hGH minigene-containing transgenic mice are used. Data obtained for the Pdx1-creLate and control samples were compaired to investigate the effect of hGH on the mRNA profile of islets. The data obtained from the islets of pregnant mice was added to the analysis to confirm the pregnacy-like phenotype in the Pdx1-creLate islets. The data of the different days of pregnancy was already described in Schraenen et al. 2010 (PMID: 20886204 and PMID: 20938637).
Project description:ABSTRACT:Pregnancy requires a higher functional beta cell mass and this is associated with profound changes in the gene expression profile of pancreatic islets. Taking Tph1 as a sensitive marker for pregnancy-related islet mRNA expression in female mice, we previously identified prolactin receptors and placental lactogen as key signalling molecules. Since beta cells from male mice also express prolactin receptors, the question arose whether male and female islets have the same phenotypic resilience at the mRNA level during pregnancy. We addressed this question in vitro, by using islet tissue culture with placental lactogen and in vivo, by transplanting male or female islets into female acceptor mice. Additionally, the islet mRNA expression of pregnant prolactin receptor deficient mice was compared with that of their pregnant wild-type littermates. When cultured with placental lactogen, or transplanted in female recipients that became pregnant (day 12.5), male islets induced the ‘islet pregnancy gene signature’, which we defined as the 12 highest induced genes in non-transplanted female islets at day 12.5 of pregnancy. In addition, serotonin immunoreactivity was also induced in these male transplanted islets at day 12.5 of pregnancy. In order to investigate the importance of prolactin receptors in these mRNA changes we used a prolactin receptor deficient mouse model. For the 12 genes of the signature, which are highly induced in control pregnant mice, no significant induction of mRNA transcripts was found at day 9.5 of pregnancy. Together, our results support the key role of placental lactogen as a circulating factor that can trigger the pregnancy mRNA profile in male and female beta cells. Islets were isolated from non-prengant (NP) and pregnant (day 9.5) PRLR+/+ and PRLR-/- mice for RNA extraction and hybridization on Affymetrix microarrays. For every condition 3 biological replicates were used.
Project description:Pancreatic β cell dysfunction greatly contributes to the pathogenesis of type 2 diabetes. MiR-21 has been shown to be induced in the islets of glucose intolerant patients and type 2 diabetic mice. However, the role of miR-21 in the regulation of pancreatic β cell function remains largely elusive. In the current study, we studied the pathway by which miR-21 regulates glucose-stimulated insulin secretion utilizing mice lacking miR-21 in their β cells (miR-21βKO). We found that miR-21βKO mice developed glucose intolerance due to impaired glucose-stimulated insulin secretion. Mechanistic studies revealed that miR-21 enhances glucose uptake and subsequently promotes insulin secretion by up-regulating Glut2 expression in a miR-21-Pdcd4-AP-1 dependent pathway. Over-expression of Glut2 in knockout islets resulted in rescue of the impaired glucose-stimulated insulin secretion. Furthermore, we demonstrated that delivery of miR-21 into the pancreas of type 2 diabetic db/db mice is able to promote Glut2 expression and significantly reduce blood glucose level. Taking together, our results reveal that miR-21 in islet β cell promotes insulin secretion and support a role for miR-21 in the adaptation of pancreatic β cell function in type 2 diabetes.
Project description:ABSTRACT:Pregnancy requires a higher functional beta cell mass and this is associated with profound changes in the gene expression profile of pancreatic islets. Taking Tph1 as a sensitive marker for pregnancy-related islet mRNA expression in female mice, we previously identified prolactin receptors and placental lactogen as key signalling molecules. Since beta cells from male mice also express prolactin receptors, the question arose whether male and female islets have the same phenotypic resilience at the mRNA level during pregnancy. We addressed this question in vitro, by using islet tissue culture with placental lactogen and in vivo, by transplanting male or female islets into female acceptor mice. Additionally, the islet mRNA expression of pregnant prolactin receptor deficient mice was compared with that of their pregnant wild-type littermates. When cultured with placental lactogen, or transplanted in female recipients that became pregnant (day 12.5), male islets induced the ‘islet pregnancy gene signature’, which we defined as the 12 highest induced genes in non-transplanted female islets at day 12.5 of pregnancy. In addition, serotonin immunoreactivity was also induced in these male transplanted islets at day 12.5 of pregnancy. In order to investigate the importance of prolactin receptors in these mRNA changes we used a prolactin receptor deficient mouse model. For the 12 genes of the signature, which are highly induced in control pregnant mice, no significant induction of mRNA transcripts was found at day 9.5 of pregnancy. Together, our results support the key role of placental lactogen as a circulating factor that can trigger the pregnancy mRNA profile in male and female beta cells. The data obtained from the normal islets of pregnant mice (day12.5) was already described in Schraenen et al. 2010 (PMID: 20886204 and PMID: 20938637). Islets and islet grafts were isolated from non-prengant and pregnant mice for RNA extraction and hybridization on Affymetrix microarrays. For every condition, at least 3 biological replicates were used.
Project description:ABSTRACT:Pregnancy requires a higher functional beta cell mass and this is associated with profound changes in the gene expression profile of pancreatic islets. Taking Tph1 as a sensitive marker for pregnancy-related islet mRNA expression in female mice, we previously identified prolactin receptors and placental lactogen as key signalling molecules. Since beta cells from male mice also express prolactin receptors, the question arose whether male and female islets have the same phenotypic resilience at the mRNA level during pregnancy. We addressed this question in vitro, by using islet tissue culture with placental lactogen and in vivo, by transplanting male or female islets into female acceptor mice. Additionally, the islet mRNA expression of pregnant prolactin receptor deficient mice was compared with that of their pregnant wild-type littermates. When cultured with placental lactogen, or transplanted in female recipients that became pregnant (day 12.5), male islets induced the ‘islet pregnancy gene signature’, which we defined as the 12 highest induced genes in non-transplanted female islets at day 12.5 of pregnancy. In addition, serotonin immunoreactivity was also induced in these male transplanted islets at day 12.5 of pregnancy. In order to investigate the importance of prolactin receptors in these mRNA changes we used a prolactin receptor deficient mouse model. For the 12 genes of the signature, which are highly induced in control pregnant mice, no significant induction of mRNA transcripts was found at day 9.5 of pregnancy. Together, our results support the key role of placental lactogen as a circulating factor that can trigger the pregnancy mRNA profile in male and female beta cells.
Project description:ABSTRACT: Furin is a proprotein convertase (PC) responsible for proteolytic activation of a wide array of precursor proteins within the secretory pathway. It maps to the PRC1 locus, a type 2 diabetes susceptibility locus, yet its specific role in pancreatic β cells is largely unknown. The aim of this study was to determine the role of furin in glucose homeostasis. We show that furin is highly expressed in human islets, while PCs that potentially could provide redundancy are expressed at considerably lower levels. β cell-specific furin knockout (βfurKO) mice are glucose intolerant, due to smaller islets with lower insulin content and abnormal dense core secretory granule morphology. RNA expression analysis and differential proteomics on βfurKO islets revealed activation of Activating Transcription Factor 4 (ATF4), which was mediated by mammalian target of rapamycin C1 (mTORC1). βfurKO cells show impaired cleavage of the accessory V-ATPase subunit Ac45, and by blocking this pump in β cells the mTORC1 pathway is activated. Furthermore, βfurKO cells show lack of insulin receptor cleavage and impaired response to insulin. Taken together, these results suggest a model of mTORC1-ATF4 hyperactivation in β cells lacking furin, which causes β cell dysfunction. METHOD: Data obtained for the β cell specific knockout (RIP-Cre+/- furin flox/flox) and control (furin flox/flox) samples were compared to investigate the effect of furin loss on the mRNA profile of islets. Although this method does not directly provide furin targets, the notion of differential gene expression might elucidate affected cellular processes, potentially leading to upstream furin substrates.
Project description:Sirtuin 1 (Sirt1) has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear.This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1-Cre;Sirt1(ex4F/F) mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas. We found that in the Pdx1-Cre;Sirt1(ex4F/F) mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2A2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r) as well as with a marked down regulation of endoplasmic reticulum (ER) chaperones that participate in the Unfolded Protein Response (UPR) pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP) cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas. This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncover a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted. To uncover other Sirt1-regulated mechanisms, we performed a gene expression microarray analysis comparing pancreata from the 6 month old Sirt1âdeficient mice to their controls (n=3 per group).