Project description:Genome Wides Association Studies (GWAS) have identified tens of thousands of associations between human genetic variation and common disease. Despite the abundance of GWAS associations, functional identification and characterization of causative variants and effector genes remains a challenging prospect. Human erythropoiesis provides a highly tractable model system for the development of tools for GWAS analysis. Using the Human Umbilical Derived Erythroid Progenitor 2 (HUDEP-2) cell line we have modelled the effects of two variants associated with red blood cell traits using CRISPR/Cas9 facilitated HDR editing.
Project description:Genome Wides Association Studies (GWAS) have identified tens of thousands of associations between human genetic variation and common disease. Despite the abundance of GWAS associations, functional identification and characterization of causative variants and effector genes remains a challenging prospect. Human erythropoiesis provides a highly tractable model system for the development of tools for GWAS analysis. Using the Human Umbilical Derived Erythroid Progenitor 2 (HUDEP-2) cell line we have modelled the effects of two variants associated with red blood cell traits using CRISPR/Cas9 facilitated HDR editing.
Project description:Genome Wides Association Studies (GWAS) have identified tens of thousands of associations between human genetic variation and common disease. Despite the abundance of GWAS associations, functional identification and characterization of causative variants and effector genes remains a challenging prospect. Human erythropoiesis provides a highly tractable model system for the development of tools for GWAS analysis. Using the Human Umbilical Derived Erythroid Progenitor 2 (HUDEP-2) cell line we have modelled the effects of two variants associated with red blood cell traits using CRISPR/Cas9 facilitated HDR editing.