Identification of ACLA, an adipoyl Co enzyme A ligase in Penicillium chrysogenum, a key enzyme of cephem antibiotics
Ontology highlight
ABSTRACT: Production of cephalosporin precursors with recombinant strains of Penicillium chrysogenum has improved the economics and reduced the environmental impact of industrial cephalosporin production. The engineered P. chrysogenum strains used in these processes express heterologous enzymes that convert the intermediate acyl-6-aminopenicillanic acid into different tailor-made compounds. Activation of the cephalosporin side-chain precursor to its corresponding CoA thioester is an essential step for its incorporation into the β-lactam backbone. To identify the acyl-CoA ligase involved in activation of adipic acid, a frequently used cephalosporin side-chain precursor, we searched the genome of P.chrysogenum for putative structural genes encoding acyl-CoA ligases. Chemostat-based transcriptome analysis was then used to identify the one presenting the highest expression level when cells were grown in the presence of adipic acid. Deletion of the gene renamed aclA, led to a 32% decreased specific rate of adipic acid consumption and a three-fold reduction of adipoyl-6-aminopenicillanic acid levels in chemostat cultures of P. chrysogenum, but did not affect penicillin production. After cloning the gene and overexpressing it in Escherichia coli, its purified protein product was shown to have adipoyl-CoA ligase, but no phenylacetyl-CoA ligtase activity. Finally, by fusing the gene to a sequence encoding cyan fluorescent protein, the resulting fusion protein localized to microbodies, which indicates that activation of the side-chain precursor adipic acid takes place in this compartment, where also the subsequent acyltransferase step takes place. Identification and functional characterization of this adipoyl-CoA ligtase gene may aid in developing future metabolic engineering strategies for improving the production of different cephalosporins.
ORGANISM(S): Penicillium chrysogenum
PROVIDER: GSE12617 | GEO | 2009/08/01
SECONDARY ACCESSION(S): PRJNA113079
REPOSITORIES: GEO
ACCESS DATA