Transcriptomic analysis of human extravillous trophoblast cells (HTR8/Svneo) cultured as 3D spheroids and 2D monolayers
Ontology highlight
ABSTRACT: The current objectives are to develop a 3D spheroid model that will allow us to better emulate placental invasion in vitro and to characterize the transcriptomic and functional outcomes.
Project description:Prenatal cannabis use is a significant problem and poses important health risks for the developing fetus. The molecular mechanisms underlying these changes are not fully elucidated but are thought to be attributed to delta-9-tetrahydrocannabinol (THC), the main bioactive constituent of cannabis. It has been reported that THC may target the mitochondria in several tissue types, including placental tissue and trophoblast cell lines, and alter their function. In the present study, in response to 48-h THC treatment of the human extravillous trophoblast cell line HTR8/SVneo, we demonstrate that cell proliferation and invasion are significantly reduced. We further demonstrate THC-treatment elevated levels of cellular reactive oxygen species and markers of lipid damage. This was accompanied by evidence of increased mitochondrial fission. We also observed increased expression of cellular stress markers, HSP70 and HSP60, following exposure to THC. These effects were coincident with reduced mitochondrial respiratory function and a decrease in mitochondrial membrane potential. Taken together, our results suggest that THC can induce mitochondrial dysfunction and reduce trophoblast invasion; outcomes that have been previously linked to poor placentation. We also demonstrate that these changes in HTR8/SVneo biology may be variably mediated by cannabinoid receptors CB1 and CB2.
Project description:Toxoplasma gondii is an intracellular parasite that causes severe disease when the infection occurs during pregnancy. Adenosine is a purine nucleoside involved in numerous physiological processes; however, the role of adenosine receptors in T. gondii-induced trophoblast cell function has not been investigated until now. The goal of the present study was to evaluate the intracellular signaling pathways regulated by adenosine receptors using a HTR-8/SVneo trophoblast cell model of T. gondii infection. HTR8/SVneo human extravillous trophoblast cells were infected with or without T. gondii and then evaluated for cell morphology, intracellular proliferation of the parasite, adenosine receptor expression, TNF-? production and mitogen-activated protein (MAP) kinase signaling pathways triggered by adenosine A3 receptor (A3AR). HTR8/SVneo cells infected with T. gondii exhibited an altered cytoskeletal changes, an increased infection rate and reduced viability in an infection time-dependent manner. T. gondii significantly promoted increased TNF-? production, A3AR protein levels and p38, ERK1/2 and JNK phosphorylation compared to those observed in uninfected control cells. Moreover, the inhibition of A3AR by A3AR siRNA transfection apparently suppressed the T. gondii infection-mediated upregulation of TNF-?, A3AR production and MAPK activation. In addition, T. gondii-promoted TNF-? secretion was dramatically attenuated by pretreatment with PD098059 or SP600125. These results indicate that A3AR-mediated activation of ERK1/2 and JNK positively regulates TNF-? secretion in T. gondii-infected HTR8/SVneo cells.
Project description:Placental extravillous trophoblast (EVT) invasion is essential in establishing proper blood supply to the fetus during pregnancy. However, traditional 2D in vitro systems do not model the in vivo invasion process in an anatomically-relevant manner. Our objectives were to develop a 3D spheroid model that would allow better emulation of placental invasion in vitro and to characterize the transcriptomic and functional outcomes. HTR8/SVneo EVT cells were self-assembled into 3D spheroids using ultra-low attachment plates. Transcriptomic profiling followed by gene set enrichment and gene ontology analyses revealed major global transcriptomic differences, with significant up-regulations in EVTs cultured as 3D spheroids in canonical pathways and biological processes such as immune response, angiogenesis, response to stimulus, wound healing, and others. These findings were further validated by RT-qPCR, showing significant up-regulations in genes and/or proteins related to epithelial-mesenchymal transition, cell-cell contact, angiogenesis, and invasion/migration. A high-throughput, spheroid invasion assay was applied to reveal the dynamic invasion of EVTs away from the spheroid core into extracellular matrix. Lastly, lipopolysaccharide, dexamethasone, or Δ9-tetrahydrocannabinol exposure was found to impact the invasion of EVT spheroids. Altogether, we present a well-characterized, 3D spheroid model of EVT invasion and demonstrate its potential use in drug and toxin screening during pregnancy.
Project description:Placental trophoblast invasion involves a cellular transition from epithelial to mesenchymal phenotype. Cytotrophoblasts undergo epithelial to mesenchymal transition (EMT) when differentiating into extravillous trophoblasts and gaining the capacity of invasion. In this research, we investigated the role of DNA methylation in trophoblasts during this EMT. First, using BeWo and HTR8/SVneo cell lines as models of cytotrophoblasts and extravillous trophoblasts, respectively, we analyzed the gene expression and DNA methylation status of the known epithelial marker genes, E-Cadherin and Cytokeratin7. We found that, in HTR8/SVneo cells, both genes were silenced and their promoters hypermethylated, as compared with the high-level gene expression and promoter hypomethylation observed in BeWo cells. This result suggests that dynamic DNA methylation of epithelial marker genes plays a critical role in the trophoblast EMT process. To verify these results, we treated HTR8/SVneo cells with 5-aza-dC, a known inhibitor of DNA methyltransferase, for three days. Five-Aza-dC treatment significantly increased the expression of epithelial marker genes and slightly decreased the expression of mesenchymal genes, as detected by qRT-PCR, immunocytochemistry and Western blot. Furthermore, 5-aza-dC treated HTR8/SVneo cells changed their morphology from mesenchymal into epithelial phenotype, indicating that 5-aza-dC induced mesenchymal to epithelial transition. Lastly, we examined the effect of 5-aza-dC on trophoblast migration and invasion capacity. We applied 5-aza-dC to HTR8/SVneo cells in trans-well cell migration and invasion assays and found that 5-aza-dC treatment decreased trophoblast migration and invasion capacity. In conclusion, DNA methylation of epithelial marker genes represents a molecular mechanism for the process of trophoblast EMT.
Project description:Pregnancy complications are associated with oxidative stress induced by accumulation of trophoblastic ROS in the placenta. We employed the human trophoblast HTR8/SVneo cell line to determine the effect of curcumin pre-treatment on H2O2-induced oxidative damage in HTR8/Sveo cells. Cells were pretreated with 2.5 or 5 ?M curcumin for 24 h, and then incubated with 400 ?M H2O2 for another 24 h. The results showed that H2O2 decreased the cell viability and induced excessive accumulation of reactive oxygen species (ROS) in HTR8/Sveo cells. Curcumin pre-treatment effectively protected HTR8/SVneo cells against oxidative stress-induced apoptosis via increasing Bcl-2/Bax ratio and decreasing the protein expression level of cleaved-caspase 3. Moreover, curcumin pre-treatment alleviated the excessive oxidative stress by enhancing the activity of antioxidative enzymes. The antioxidant effect of curcumin was achieved by activating Nrf2 and its downstream antioxidant proteins. In addition, knockdown of Nrf2 by Nrf2-siRNA transfection abolished the protective effects of curcumin on HTR8/SVneo cells against oxidative damage. Taken together, our results show that curcumin could protect HTR8/SVneo cells from H2O2-induced oxidative stress by activating Nrf2 signaling pathway.
Project description:Moderate invasion of trophoblast cells into endometrium is essential for the placental development and normal pregnancy. Electric field (EF)-induced effects on cellular behaviors have been observed in many cell types. This study was to investigate the effect of physiological direct current EF (dc EF) on cellular responses such as elongation, orientation and motility of trophoblast cells. Immortalized first trimester extravillous trophoblast cells (HTR-8/SVneo) were exposed to the dc EF at physiological magnitude. Cell images were recorded and analyzed by image analyzer. Cell lysates were used to detect protein expression by Western blot. Cultured in the dc EFs the cells showed elongation, orientation and enhanced migration rate compared with non-EF stimulated cells at field strengths of 100 mV/mm to 200 mV/mm. EF exposure increased focal adhesion kinase (FAK) phosphorylation in a time-dependent manner and increased expression levels of MMP-2. Pharmacological inhibition of FAK impaired the EF-induced responses including motility and abrogated the elevation of MMP-2 expression. However, the expression levels of integrins like integrin α1, α5, αV and β1 were not affected by EF stimulation. Our results demonstrate the importance of FAK activation in migration/motility of trophobalst cells driven by EFs. In addition, it raises the feasibility of using applied EFs to promote placentation through effects on trophoblast cells.
Project description:Human bone marrow mesenchymal stromal cells (MSCs) are conventionally cultured as adherent monolayers on tissue culture plastic. MSCs can also be cultured as 3D cell aggregates (spheroids). Optimised 3D conditions (60,000 MSCs cultured as a spheroid for 5 days) inhibited MSC proliferation and induced cell shrinkage in the absence of cell death. Primary human MSCs isolated from 2 donors were cultured under both monolayer (2D MSCs) and optimised 3D (3D MSCs) conditions. High quality RNA was isolated from all samples, and global gene expression analysis was performed in duplicate (using Agilent SurePrint G3 Human Gene Expression 8x60K v2 Microarrays) to identify gene expression changes in 3D compared to 2D MSC cultures.
Project description:To investigate the function TET3 in the regulation of DNA methylation, we established HTR8-SVneo cell lines in which target gene has been knocked down by siRNA. We then performed gene expression profiling analysis using data obtained from RNA-seq for three replicates.
Project description:ProblemDuring normal pregnancy, delicate crosstalk is established between fetus-derived trophoblasts and maternal immune cells to ensure maternal-fetal tolerance and successful placentation. Dysfunction in these interactions has been highly linked to certain pregnancy complications.Method of studyNaïve CD4+ T cells were cultivated with or without 1st trimester derived trophoblast cell line HTR8/SVneo cells in the absence or presence of T helper 17 (Th17) or regulatory (Treg)cell-inducing differentiation conditions. After 5 days of co-culture, HTR8/SVneo cells and CD4+ T cells were harvested and analyzed using flow cytometry.ResultsCD4+ T cells exposed to HTR8/SVneo cells showed enhanced induction of CD4+ Foxp3+ Treg cells with strong expression of TGF-β1 and inhibitory molecules (cytotoxic T lymphocyte-associated protein-4 [CTLA-4], T-cell immunoglobulin mucin-3 [Tim-3], and programmed cell death-1 [PD-1]). Though not effecting Th17 differentiation, exposure to HTR8/SVneo cells promoted increased expression of proliferative and apoptotic markers on Th17 cells. Co-culture with Th0 cells, or differentiated Th17 or Treg cells, down-regulated Caspase-3 and MMP-9 (but not MMP-2) expression in HTR8/SVneo cells, while promoting Ki67 expression.ConclusionsHTR8/SVneo cells regulated maternal CD4+ T-cell differentiation, resulting in the expansion of immunosuppressive Treg cells, while CD4+ T cells might promote the growth, and control the invasiveness of HTR8/SVneo cells. Thus, a bidirectional regulatory loop might exist between trophoblasts and maternal immune cell subsets, thereby promoting harmonious maternal-fetal crosstalk.