Gene expression profiling of neural crest progenitor cultures derived from human embryonic stem cells carrying nonsense mutations in the Polycomb gene ASXL1
Ontology highlight
ABSTRACT: This SuperSeries is composed of the SubSeries listed below.
Project description:We observed impaired neural crest cell differentiation from human embryonic stem cells that harbor nonsense mutations in the Polycomb gene ASXL1. To investigate the underlying molecular mechanisms, we harvested neural crest differentiation cultures from wildtype and heterozygous ASXL1 mutant lines at day 7 of a neural crest differentiation protocol and performed total RNA sequencing using the Illumina HiSeq2500 system. Analyses of global transcriptomes revealed profound changes between wildtype and mutant cultures, and we identified downregulation of the neural crest transcription factor ZIC1.
Project description:We observed impaired neural crest cell differentiation from human embryonic stem cells that harbor nonsense mutations in the Polycomb gene ASXL1. To investigate the underlying molecular mechanisms, we harvested neural crest differentiation cultures from wildtype and homozygous ASXL1 mutant lines at day 7 of a neural crest differentiation protocol and performed total RNA sequencing using the Illumina NextSeq system. Analyses of global transcriptomes revealed profound changes between wildtype and mutant cultures, and we identified downregulation of several genes of the neural crest regulatory network, most prominently of the transcription factor ZIC1.
Project description:Gene expression profiling of neural crest progenitor cultures derived from human embryonic stem cells carrying nonsense mutations in the Polycomb gene ASXL1
Project description:Gene expression profiling of neural crest progenitor cultures derived from human embryonic stem cells carrying nonsense mutations in the Polycomb gene ASXL1 [HET]
Project description:Gene expression profiling of neural crest progenitor cultures derived from human embryonic stem cells carrying nonsense mutations in the Polycomb gene ASXL1 [HOM]
Project description:The neural crest (NC) gives rise to a multitude of fetal tissues, and its misregulation is implicated in congenital malformations. Here, we investigated molecular mechanisms pertaining to NC-related symptoms in Bohring-Opitz syndrome (BOS), a developmental disorder linked to mutations in the Polycomb group factor Additional sex combs-like 1 (ASXL1). Genetically edited human pluripotent stem cell lines that were differentiated to NC progenitors and then xenotransplanted into chicken embryos demonstrated an impairment of NC delamination and emigration. Molecular analysis showed that ASXL1 mutations correlated with reduced activation of the transcription factor ZIC1 and the NC gene regulatory network. These findings were supported by differentiation experiments using BOS patient-derived induced pluripotent stem cell lines. Expression of truncated ASXL1 isoforms (amino acids 1-900) recapitulated the NC phenotypes in vitro and in ovo, raising the possibility that truncated ASXL1 variants contribute to BOS pathology. Collectively, we expand the understanding of truncated ASXL1 in BOS and in the human NC.
Project description:EPI-NCSC are remnants of the embryonic neural crest in an adult location, the bulge of hair follicles. They are multipotent stem cells that have the physiological property to generate a wide array of differentiated cell types, including neurons, nerve supporting cells, smooth muscle cells, bone/cartilage cells and melanocytes. EPI-NCSC are easily accessible in the hairy skin and can be isolated as a highly pure population of stem cells. This video provides a detailed protocol for preparing mouse EPI-NCSC cultures from whisker follicles. The whisker pad of an adult mouse is removed, and whisker follicles dissected. The follicles are then cut longitudinally and subsequently transversely above and below the bulge region. The bulge is removed from the collagen capsule and placed in a culture plate. EPI-NCSC start to emigrate from the bulge explants 3 to 4 days later.
Project description:Replacement of lost cranial bone (partly mesodermal and partly neural crest-derived) is challenging and includes the use of nonviable allografts. To revitalize allografts, bone marrow-derived mesenchymal stromal cells (mesoderm-derived BM-MSCs) have been used with limited success. We hypothesize that coating of allografts with induced neural crest cell-mesenchymal progenitor cells (iNCC-MPCs) improves implant-to-bone integration in mouse cranial defects. Human induced pluripotent stem cells were reprogramed from dermal fibroblasts, differentiated to iNCCs and then to iNCC-MPCs. BM-MSCs were used as reference. Cells were labeled with luciferase (Luc2) and characterized for MSC consensus markers expression, differentiation, and risk of cellular transformation. A calvarial defect was created in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice and allografts were implanted, with or without cell coating. Bioluminescence imaging (BLI), microcomputed tomography (μCT), histology, immunofluorescence, and biomechanical tests were performed. Characterization of iNCC-MPC-Luc2 vs BM-MSC-Luc2 showed no difference in MSC markers expression and differentiation in vitro. In vivo, BLI indicated survival of both cell types for at least 8 weeks. At week 8, μCT analysis showed enhanced structural parameters in the iNCC-MPC-Luc2 group and increased bone volume in the BM-MSC-Luc2 group compared to controls. Histology demonstrated improved integration of iNCC-MPC-Luc2 allografts compared to BM-MSC-Luc2 group and controls. Human osteocalcin and collagen type 1 were detected at the allograft-host interphase in cell-seeded groups. The iNCC-MPC-Luc2 group also demonstrated improved biomechanical properties compared to BM-MSC-Luc2 implants and cell-free controls. Our results show an improved integration of iNCC-MPC-Luc2-coated allografts compared to BM-MSC-Luc2 and controls, suggesting the use of iNCC-MPCs as potential cell source for cranial bone repair.
Project description:ObjectivesEnteric neural stem cells provide hope of curative treatment for enteric neuropathies. Current protocols for their harvesting from humans focus on the generation of 'neurospheres' from cultures of dissociated gut tissue. The study aims to better understand the derivation, generation and composition of enteric neurospheres.DesignGut tissue was obtained from Wnt1-Cre;Rosa26Yfp/Yfp transgenic mice (constitutively labeled neural crest cells) and paediatric patients. Gut cells were cultured either unsorted (mixed neural crest/non-neural crest), or following FACS selection into neural crest (murine-YFP+ve/human-p75+ve) or non-neural crest (YFP-ve/p75-ve) populations. Cultures and resultant neurospheres were characterized using immunolabelling in vitro and following transplantation in vivo.ResultsCultures of (i) unsorted, (ii) neural crest, and (iii) non-neural crest cell populations generated neurospheres similar in numbers, size and morphology. Unsorted neurospheres were highly heterogeneous for neural crest content. Neural crest-derived (YFP+ve/p75+ve) neurospheres contained only neural derivatives (neurons and glia) and were devoid of non-neural cells (i.e. negative for SMA, c-Kit), with the converse true for non-neural crest-derived (YFP-ve/p75-ve) 'neurospheres'. Under differentiation conditions only YFP+ve cells gave rise to neural derivatives. Both YFP+ve and YFP-ve cells displayed proliferation and spread upon transplantation in vivo, but YFP-ve cells did not locate or integrate within the host ENS.ConclusionsSpherical accumulations of cells, so-called 'neurospheres' forming in cultures of dissociated gut contain variable proportions of neural crest-derived cells. If they are to be used for ENS cell replacement therapy then improved protocols for their generation, including cell selection, should be sought in order to avoid inadvertent transplantation of non-therapeutic, non-ENS cells.
Project description:Neural crest cells arise from the border of the neural plate and epidermal ectoderm, migrate extensively and differentiate into diverse cell types during vertebrate embryogenesis. Although much has been learnt about growth factor signals and gene regulatory networks that regulate neural crest development, limited information is available on how epigenetic mechanisms control this process. In this study, we show that Polycomb repressive complex 2 (PRC2) cooperates with the transcription factor Snail2/Slug to modulate neural crest development in Xenopus. The PRC2 core components Eed, Ezh2 and Suz12 are expressed in the neural crest cells and are required for neural crest marker expression. Knockdown of Ezh2, the catalytic subunit of PRC2 for histone H3K27 methylation, results in defects in neural crest specification, migration and craniofacial cartilage formation. EZH2 interacts directly with Snail2, and Snail2 fails to expand the neural crest domains in the absence of Ezh2. Chromatin immunoprecipitation analysis shows that Snail2 regulates EZH2 occupancy and histone H3K27 trimethylation levels at the promoter region of the Snail2 target E-cadherin. Our results indicate that Snail2 cooperates with EZH2 and PRC2 to control expression of the genes important for neural crest specification and migration during neural crest development.