Modeling protein destiny in developing tomato fruit
Ontology highlight
ABSTRACT: Proteomics and transcriptomics data of tomato fruits (Solanum lycopersicum L. var. Moneymaker) at 9 developmental stages were used to calculate with a mathematical model the rate constants of synthesis and degradation for over 1,000 proteins. Proteome and transcriptome were extracted from the pericarp tissue and analyzed using label-free LC-MS/MS (Orbitrap Q-Exactive) and RNA Sequencing (Illumina), respectively. Absolute quantification of transcriptome has been obtained by spiking-in internal standard before total-RNA extraction. Absolute quantification of the proteome has been approximated using the "Total Protein" approach. An OD equation defining the changes of protein content has been used to determine the synthesis and degradation rate constants (day -1). Almost 2,400 transcript-protein pairs were identified and the translation and degradation rate constants were determined for more than a thousand proteins. The model predicted median values of about 2 min for the translation and a lifetime of approximately 11 days. Proteins involved in protein synthesis had higher ks and kd values, indicating that the protein machinery is particularly flexible. None sequenced-based features were found that could be used to predict these rate constants.
ORGANISM(S): Solanum lycopersicum
PROVIDER: GSE128739 | GEO | 2019/03/23
REPOSITORIES: GEO
ACCESS DATA