Next Generation Sequencing of TMAO (Trimethylamine N-oxide)-treated Cardiac Transcriptomes
Ontology highlight
ABSTRACT: To investigate the mechanism how TMAO deteriorates cardiac dysfunction in murine left ventricular pressure overload model, we performed RNA-seq analysis with cardiac tissue from TMAO-treated mice.
Project description:Purpose: The goals of this study were to identify preferential gene expression signatures that are unique to HAECs stimulated with the uremic toxin, TMAO, to accelerate vascular inflammation associated with chronic kidney diseases. Methods and results: HAECs were treated with TMAO (600 µM) for 18 hours, and RNAs were collected to generate mRNA transcription profiles. Transcriptional profiling revealed a unique TMAO stimulated HAECs relative to a non-stimulated control HAECs. Conclusion: Our study represents the first detailed analysis of TMAO treated HAECs transcriptome.
Project description:Trimethylamine N-oxide (TMAO), a metabolite derived from intestine microbial flora, enhances vascular inflammation in a variety of cardiovascular disease, and the bacterial communities associated with trimethylamine N-oxide (TMAO) metabolism is higher in pulmonary hypertension (PH) patients. The effects of TMAO on PH, however, has not been elucidated. In the present study, we found that circulating TMAO is elevated in intermediate to high-risk PH patients when compared to healthy control or low-risk PH patients. In monocrotaline-induced rat PH models, circulating TMAO is elevated; and reduction of TMAO using 3,3-dimethyl-1-butanol (DMB) significantly decreased right ventricle systolic pressure, pulmonary vascular muscularization in both monocrotaline-induced rat PH and hypoxia induced mice PH models. RNA sequencing of rat lungs on DMB revealed significant suppression of pathways involved in cytokine-cytokine receptor interaction, and cytokine and chemokine signaling. Protein-protein interaction analysis of the differentially expressed transcripts regulated by DMB showed 5 hub genes with a strong connectivity of proinflammatory cytokines and chemokines including Kng1, Cxcl1, Cxcl2, CxcL6 and Il6. In vivo, TMAO significantly increased the expression of Kng1, Cxcl1, Cxcl2, CxcL6 and Il6 in bone marrow derived macrophage. And TMAO-treated conditioned medium from macrophage increased the proliferation and migration of pulmonary artery smooth muscle cells; but TMAO treatment did not change the proliferation or migration of pulmonary artery smooth muscle cells. In conclusion, our study demonstrates that TMAO is increased in severe PH, and the reduction of TMAO using DMB reduces pulmonary vascular muscularization and alleviates PH via suppressing the macrophage production of chemokines and cytokines.
Project description:Gene-expression measurements were made over a 24 h time course as fermentative steady state E. coli cells were subjected to a shift to TMAO respiration.
Project description:To explore the mechanisms for SOCS3 in cardiomyocytes to regulate cardiac hypertrophic remodeling after pressure overload, we therefore performed proteomic analysis to identify novel protein targets or pathways in left ventricular samples from SOCS3 knockout (SOCS3cko) mice and their WT littermates.
Project description:Aims: Cardiomyocyte-specific nitric oxide synthase 3 (NOS3) overexpression reduces left ventricular (LV) remodelling after myocardial infarction in mice, but its effect on sustained LV pressure-overload remains incompletely understood. We investigated LV structural and functional adaptation to elevated afterload in mice with cardiomyocyte-restricted NOS3 overexpression (NOS3TG) and wild type littermates (WT). Methods and Results: Hemodynamic indices, cardiac hypertrophy and interstitial fibrosis were measured 10 weeks after transverse aortic constriction (TAC). After 10 weeks TAC, NOS3TG had better preserved systolic function (maximum rates of pressure development normalized to maximal pressure 77±6 versus 65±2 ms-1, P=0.05), reduced heart weight-body weight ratio (HW/BW, 5.0±0.3 versus 5.8±0.1, P<0.05), and cardiomyocyte width than WT (14.9±0.4 vs 16.7±0.2 ?m, P<0.05). After 10 weeks TAC, a 44k cDNA chip-based microarray analysis was validated using real time PCR and revealed significantly altered expression pattern of genes involved in cellular growth, matrix remodelling, and inflammation between genotypes. Conclusions: Cardiomyocyte-restricted NOS3 overexpression attenuates TAC-induced hypertrophy via autocrine inhibition of cardiomyocyte cell growth, but does not mitigate myocardial fibrosis. The subsequent diastolic dysfunction suggests that inhibition of matrix producing cells during hypertrophic stress is necessary to prevent functional and structural deterioration of the pressure-overloaded heart. Left ventricular mRNA expression profiles were compared between alpha-myosin heavy chain driven nitric oxide synthase 3 (alpha-MHC-NOS3) transgenic and wild type (WT) littermate mice at baseline and 10 weeks after transversal aortic constrcition-induced pressure-overload. Biological repeats: n=4, two males and two females, for each group and condition. Transgenic mice were backcrossed for seven generations (F7) to a C57Bl/6 N background and age and weight matched animals were used for microarray experiments.
Project description:Cardiovascular diseases (CVDs) are leading causes of death worldwide. Endothelial dysfunction is a critical initiating factor contributing to CVDs, which progression involves the gut microbiome-derived metabolite Trimethylamine N-oxide (TMAO). Here, we aim to clarify the time-dependent pathways by which TMAO mediates endothelial dysfunction.
Project description:Aortic banding is an excellent model system to evaluate the process of development of left ventricular hypertrophy in response to hemodynamic stress. The Affymetrix GeneChip MgU74Av1 was used to analyze expression profiles of mice at different time points after surgical intervention for pressure-overload induced hypertrophy. More information about this model may be obtained at http://cardiogenomics.med.harvard.edu/groups/proj1/pages/band_home.html Keywords = Pressure overload, cardiac hypertrophy Keywords: time-course
Project description:β-Cell dysfunction, manifested as impaired glucose-stimulated insulin secretion (GSIS), and β-cell loss, which presents as dedifferentiation, inhibited transcriptional identity and death, are the hallmarks of type 2 diabetes. Trimethylamine N-oxide (TMAO), a gut microbiota metabolite, has been shown to play a role in cardiovascular disease. Here, we found that plasma TMAO levels are elevated in both diabetic mice and human subjects and that TMAO at a similar concentration to that found in diabetes could directly decrease β-cell GSIS in both MIN6 cells and primary islets from mice or humans. Elevation of TMAO levels through choline diet feeding impairs GSIS, the β-cell proportion, and glucose tolerance. TMAO inhibits calcium transients through NLRP3 inflammasome-related inflammatory cytokines and induced Serca2 loss, and a Serca2 agonist reversed the effect of TMAO on β-cell function in vitro and in vivo. Additionally, long-term TMAO exposure promotes β-cell ER stress, dedifferentiation, and apoptosis and inhibits β-cell transcriptional identity. Inhibition of TMAO production through either genetic knockdown or antisense oligomers of Fmo3, the TMAO-producing enzyme, improves β-cell GSIS, the β-cell proportion, and glucose tolerance in both db/db and choline diet-fed mice. These observations elucidate a novel role for TMAO in β-cell dysfunction and maintenance, and inhibition of TMAO could be a new approach for the treatment of type 2 diabetes.
Project description:Aims: Cardiac hypertrophy is a compensatory response to pressure overload, leading to heart failure. Recent studies have demonstrated that Rho is immediately activated in left ventricles after pressure overload, and that Rho signaling plays crucial regulatory roles in actin cytoskeleton rearrangement during cardiac hypertrophic responses. However, the mechanisms by which Rho and its downstream proteins control actin dynamics during hypertrophic responses remain not fully understood. In this study, we identified the pivotal roles of mammalian homologue of Drosophila diaphanous (mDia) 1, a Rho-effector molecule, in pressure overload-induced ventricular hypertrophy. Methods and Results: Male wild-type (WT) and mDia1-knockout (mDia1KO) mice (10–12 weeks old) were subjected to a transverse aortic constriction (TAC) or sham operation. The heart weight/tibia length ratio, cardiomyocyte cross-sectional area, left ventricular wall thickness, and expression of hypertrophy-specific genes were significantly decreased in mDia1KO mice 3 weeks after TAC, and the mortality rate was higher at 12 weeks. Echocardiography indicated that mDia1 deletion increased the severity of heart failure 8 weeks after TAC. Importantly, we could not observe apparent defects in cardiac hypertrophic responses in mDia3-knockout mice. Microarray analysis revealed that mDia1 was involved in the induction of hypertrophy related genes, including immediate early genes (IEGs), in pressure overloaded hearts. Loss of mDia1 attenuated activation of the mechanotransduction pathway in TAC-operated mice hearts. We also found that mDia1 was involved in stretch-induced activation of the mechanotransduction pathway and gene expression of c-fos in neonatal rat ventricular cardiomyocytes (NRVMs). mDia1 regulated the F/G-actin ratio in response to pressure overload in mice. Additionally, increases in nuclear myocardin-related transcription factors (MRTFs) and serum response factor (SRF) were perturbed in response to pressure overload in mDia1KO mice and to mechanical stretch in mDia1 depleted NRVMs. Conclusions: mDia1, through actin dynamics, is involved in compensatory cardiac hypertrophy in response to pressure overload.