Project description:This SuperSeries is composed of the following subset Series: GSE12905: Foxl2 functions in sex determination and histogenesis throughout mouse ovary development, analyzed by Affymetrix arrays GSE12942: Foxl2 functions in sex determination and histogenesis throughout mouse ovary development, analyzed by Agilent arrays Refer to individual Series
Project description:Partial loss of function of the transcription factor FOXL2 leads to premature ovarian failure in women. In animal models, Foxl2 is required for maintenance, and possibly induction, of female sex determination independently of other critical genes, e.g., Rspo1. Here we report expression profiling of mouse ovaries that lack Foxl2 alone or in combination with Wnt4 or Kit/c-Kit.Following Foxl2 loss, early testis genes (including Inhbb, Dhh, and Sox9) and several novel ovarian genes were consistently dysregulated during embryonic development. In the absence of Foxl2, expression changes affecting a large fraction of pathways were opposite those observed in Wnt4-null ovaries, reinforcing the notion that these genes have complementary actions in ovary development. Loss of one copy of Foxl2 revealed strong gene dosage sensitivity, with molecular anomalies that were milder but resembled ovaries lacking both Foxl2 alleles. Furthermore, a Foxl2 transgene disrupted embryonic testis differentiation and increased the levels of key female markers.The results, including a comprehensive principal component analysis, 1) support the proposal of dose-dependent Foxl2 function and anti-testis action throughout ovary differentiation; and 2) identify candidate genes for roles in sex determination independent of FOXL2 (e.g., the transcription factors IRX3 and ZBTB7C) and in the generation of the ovarian reserve downstream of FOXL2 (e.g., the cadherin-domain protein CLSTN2 and the sphingomyelin synthase SGMS2). The gene inventory is a first step toward the identification of the full range of pathways with partly autonomous roles in ovary development, and thus provides a framework to analyze the genetic bases of female fertility.
Project description:Partial loss of function of the transcription factor FOXL2 leads to premature ovarian failure in women. In animal models, Foxl2 is required for maintenance, and possibly induction, of female sex determination independently of other critical genes, i.e., Rspo1 and Wnt4. Here we report expression profiling of mouse ovaries that lack Foxl2 alone or in combination with Wnt4 or Kit/c-Kit, to identify ovarian targets of Foxl2 that, along with some testis genes, were dysregulated during embryonic development. Loss of one copy of Foxl2 revealed strong gene dosage sensitivity, with molecular anomalies that were milder but resembled ovaries lacking both Foxl2 alleles. Furthermore, a Foxl2 transgene disrupted embryonic testis differentiation and increased the levels of key female markers. The results, including a comprehensive principal component analysis of published microarray datasets 1) support the proposal of dose-dependent Foxl2 function and anti-testis action throughout ovary differentiation; and 2) identify candidate genes for a role in sex determination independent of FOXL2 (notably, the transcription factor, ZBTB7C) and in the generation of the ovarian reserve downstream of it (e.g., the cadherin-domain protein CLSTN2, or the sphingomyelin synthase, SGMS2). The gene inventory provides a framework to analyze the genetic bases of ovarian development and female fertility. Keywords: reference design
Project description:Comparison of Foxl2-null ovaries to wildtype ovaries, ovaries lacking Wnt4 or Kit, or testes, throughout mouse development. The goal of this study was to identify early Foxl2 target genes as well as other ovarian, anti-testis genes that may act independently of Foxl2. Keywords: disease state analysis; genetic modification; developmental study
Project description:Partial loss of function of the transcription factor FOXL2 leads to premature ovarian failure in women. In animal models, Foxl2 is required for maintenance, and possibly induction, of female sex determination independently of other critical genes, i.e., Rspo1 and Wnt4. Here we report expression profiling of mouse ovaries that lack Foxl2 alone or in combination with Wnt4 or Kit/c-Kit, to identify ovarian targets of Foxl2 that, along with some testis genes, were dysregulated during embryonic development. Loss of one copy of Foxl2 revealed strong gene dosage sensitivity, with molecular anomalies that were milder but resembled ovaries lacking both Foxl2 alleles. Furthermore, a Foxl2 transgene disrupted embryonic testis differentiation and increased the levels of key female markers. The results, including a comprehensive principal component analysis of published microarray datasets 1) support the proposal of dose-dependent Foxl2 function and anti-testis action throughout ovary differentiation; and 2) identify candidate genes for a role in sex determination independent of FOXL2 (notably, the transcription factor, ZBTB7C) and in the generation of the ovarian reserve downstream of it (e.g., the cadherin-domain protein CLSTN2, or the sphingomyelin synthase, SGMS2). The gene inventory provides a framework to analyze the genetic bases of ovarian development and female fertility. Keywords: reference design Comparison of Foxl2+/+,+/- and -/- whole ovaries at 2 timepoints delineating follicle formation