Project description:To understand the gene network that controls plant tolerance to cold stress, we carried out a near full genome transcript expression profiling in Arabidopsis using Affymetrix GeneChips that contain approximately 24,000 genes. For microarray analysis, Arabidopsis seedlings were cold treated at 0 C for 0 h, 3 h, 6 h, and 24 h. A total of 939 genes were statistically determined to be cold-regulated with 655 being up-regulated and 284 down-regulated. A large number of the early cold-responsive genes encode transcription factors that likely control late-responsive genes, which implies a multitude of transcriptional cascades. In addition, many genes involved in post-transcriptional and chromatin level regulation were also cold regulated suggesting their involvement in cold responsive gene regulation. A number of genes important for the biosynthesis or signaling of plant hormones, such as abscisic acid, gibberellic acid and auxin, are regulated by cold stress, which is of potential importance in coordinating cold tolerance with growth and development. We compared the cold-responsive transcriptomes of wild type and ice1, a mutant defective in an upstream transcription factor required for chilling and freezing tolerance. The transcript levels of many cold-responsive genes were altered in the ice1 mutant not only during cold stress conditions, but also before cold treatments. Our study provides a global picture of the Arabidopsis cold-responsive transcriptome and its control by ICE1, and thus will be valuable for understanding gene regulation under cold stress and the molecular mechanisms of cold tolerance. Keywords: Cold Stress response
Project description:We analysed the effect of cold priming on cold and high light regulation of gene expression. 5 days after the first cold treatment the primary stress response was widely reset. Then, a second (triggering) cold stimulus (24 h 4 °C) and a triggering high-light stimulus (2 h 800 µmol quanta m-2 s-1), which regulate many stress responsive genes in the same direction in naïve plants, caused widely specific and even inverse regulation of priming-responsive genes.
Project description:We analysed the effect of a short 24 hours cold exposure (priming-stimulus) on gene regulation upon the first two hours of a second cold (4°C) stimulus (cold-triggering) and upon the first two hours of excess light exposure (800 µmol photons m-2 s-1, light triggering). The first and the second stress treatment was seperated by 5 days long lag-phase, which is long enough to reset most of the primary stress response. Several early light and early cold responsive genes showed however a altered transcript abundance in plants, which received five days befor the cold priming stimulus. Espicially JA responsive genes showed a common priming regulation within the cold and light exposure.
Project description:Long non-coding RNAs (lncRNAs) are essential regulators of a broad range of biological processes in plants. Spectacular progress in next-generation sequencing technologies has enabled genome-wide identification of lncRNAs in multiple plant species. In this study, genome-wide lncRNA sequencing technology was used to identify cold-responsive lncRNAs at the booting stage in rice by comparison of a tolerant variety, Kongyu131 (KY131), and a sensitive variety, Dongnong422 (DN422). GO and KEGG enrichment analysis were performed, focusing on the cis- and trans- target genes of differential lncRNAs. To identify cold-responsive genes, a meta-analysis was used to integrate cold-tolerant QTLs at the booting stage. In total, 13 cold-responsive target genes were obtained by KEGG enrichment analysis combined with meta-analysis, as confirmed by qRT-PCR. Finally, three of these genes were identified in response to cold stress. These results sought to provide new insight into cold-resistance research for rice.
Project description:Tropical and subtropical plants are generally sensitive to cold and can show appreciable variation in their response to cold stress when exposed to low positive temperatures. Using nylon filter arrays, we analyzed the expression profile of 1536 expressed sequence tags (ESTs) of sugarcane (Saccharum sp.) exposed to cold for 3-48 h. Thirty-four cold-induced ESTs were identified, of which 23 were novel cold-responsive genes that had not previously been reported as being cold-inducible. This series has the samples from replicate experiment number 1. Keywords = sugarcane, cold, nylon arrays Keywords: time-course
Project description:The transcriptional programs of ectothermic teleosts are directly influenced by water temperature. Although various cold-responsive transcriptional patterns have been determined in fishes, the systematic molecular networks governing the temperature responses are still unknown. We profiled the transcriptional responses in eight tissues of zebrafish exposed to graded cold temperatures, ranging from normal (28°C) to mild (18°C) and severe (10°C) cold, using RNA-seq. The tissues varied in the number of cold-responsive genes, of which the kidney appeared to be most sensitive, whereas the brain was the least. Fuzzy k-means clustering revealed 34 gene clusters of distinct expression patterns, demonstrating diverse tissue-specific responses in conjunction with multiple aspects of ubiquitous cross-tissue responses to cold. Thirty-one GO terms were over-represented upon cold treatment. These terms are involved in basic cellular processes, such as RNA splicing and proton transport, as well tissue-specific processes, such as ‘negative regulation of endopeptidase activity’ in the kidney. To identify the cis-regulatory elements governing the concerted cold responses, the promoters of the genes that demonstrated strong co-regulation were analyzed using an enriched motif discovery program, DREME. Eleven motifs, 6 known and 5 novel, were identified. These motifs belong to the genes corresponding to the 16 over-represented GO terms identified above. Some motifs, such as the AP-1 and STAT1 binding sites, are known to be stress responsive. By integrating comprehensive cold-induced transcriptional changes with a cis-motif identification tool, we identified genome-wide regulatory networks for the cold response in zebrafish. The identified networks provided new insights into molecular mechanisms of thermal responses in teleosts.
Project description:Oil rapeseed (Brassica napus L.) is a typical winter biennial plant, with high cold tolerance during vegetative stage. In recent years, more and more early-maturing rapeseed varieties were planted across China. Unfortunately, the early-maturing rapeseed varieties with low cold tolerance have higher risk of freeze injury in cold winter and spring. Little is known about the molecular mechanisms for coping with different low-temperature stress conditions in rapeseed. In this study, we investigated 47,328 differentially expressed genes (DEGs) of two early-maturing rapeseed varieties with different cold tolerance treated with cold shock at chilling (4°C) and freezing (−4°C) temperatures, as well as chilling and freezing stress following cold acclimation or control conditions. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that two conserved (the primary metabolism and plant hormone signal transduction) and two novel (plant-pathogen interaction pathway and circadian rhythms pathway) signaling pathways were significantly enriched with differentially-expressed transcripts. Our results provided a foundation for understanding the low-temperature stress response mechanisms of rapeseed. We also propose new ideas and candidate genes for genetic improvement of rapeseed tolerance to cold stresses.
Project description:Tropical and subtropical plants are generally sensitive to cold and can show appreciable variation in their response to cold stress when exposed to low positive temperatures. Using nylon filter arrays, we analyzed the expression profile of 1536 expressed sequence tags (ESTs) of sugarcane (Saccharum sp.) exposed to cold for 3-48 h. Thirty-four cold-induced ESTs were identified, of which 23 were novel cold-responsive genes that had not previously been reported as being cold-inducible. This series has the samples from replicate experiment number 2. Keywords = sugarcane Keywords = cold Keywords = nylon arrays Keywords: time-course
Project description:To understand the gene network that controls plant tolerance to cold stress, we carried out a near full genome transcript expression profiling in Arabidopsis using Affymetrix GeneChips that contain approximately 24,000 genes. For microarray analysis, Arabidopsis seedlings were cold treated at 0 C for 0 h, 3 h, 6 h, and 24 h. A total of 939 genes were statistically determined to be cold-regulated with 655 being up-regulated and 284 down-regulated. A large number of the early cold-responsive genes encode transcription factors that likely control late-responsive genes, which implies a multitude of transcriptional cascades. In addition, many genes involved in post-transcriptional and chromatin level regulation were also cold regulated suggesting their involvement in cold responsive gene regulation. A number of genes important for the biosynthesis or signaling of plant hormones, such as abscisic acid, gibberellic acid and auxin, are regulated by cold stress, which is of potential importance in coordinating cold tolerance with growth and development. We compared the cold-responsive transcriptomes of wild type and ice1, a mutant defective in an upstream transcription factor required for chilling and freezing tolerance. The transcript levels of many cold-responsive genes were altered in the ice1 mutant not only during cold stress conditions, but also before cold treatments. Our study provides a global picture of the Arabidopsis cold-responsive transcriptome and its control by ICE1, and thus will be valuable for understanding gene regulation under cold stress and the molecular mechanisms of cold tolerance. Experiment Overall Design: Two replicates for each time point of 0 hours, 3 hours, 6 hours and 24 hours of cold treatment for the wildtype (control) and ice1 (mutant).