IRS1 plays a dominant role in regulating pancreatic alpha cell function
Ontology highlight
ABSTRACT: Inappropriate glucagon secretion deteriorates glycemic control in type 1 and type 2 diabetes. While insulin is known to regulate glucagon secretion via its receptor in alpha cells, the role of downstream proteins and signaling pathways underlying the actions of insulin are not fully defined. Using in vivo (knockout) and in vitro (knockdown) studies targeting insulin receptor substrate (IRS) proteins, we compared the relative roles of IRS1 versus IRS2 in regulating alpha cell function. Alpha cell-specific IRS1 knock out (alpha IRS1KO) mice exhibit glucose intolerance and inappropriate glucagon suppression during glucose-tolerance tests. In contrast, alpha cell-specific IRS2 knock outs (alpha IRS2KO) manifest normal glucose tolerance and suppression of glucagon secretion after glucose administration. Alpha cell lines with stable knockdown of IRS1 (alpha IRS1KD) are unable to repress glucagon mRNA expression and exhibit reduction in phosphorylation of AKT. However, glucagon mRNA expression was suppressed in response to insulin stimulation in a stable IRS2 knock down alpha cell line (alpha IRS2KD). Alpha IRS1KD cells also display suppressed global protein translation including glucagon, impaired cytoplasmic Ca2+ response and mitochondrial function. These data argue for IRS1 as a dominant regulator of pancreatic alpha cell function.
Project description:The effect of liver specific deletion of the insulin receptor substrate-1 (Irs1) and/or Irs2 upon gene expression in the fasted and fed liver of mice; and the effect of liver specific Foxo1 deletion in the Irs1 and Irs2 knockout liver during fasting and feeding.
Project description:mRNA expression profiles from alpha-MHC-Cre X IRS1-flox, alpha-MHC-Cre X IRS2-flox, or IRS2-flox mouse hearts 3 days after transaortic constriction surgery or sham surgery
Project description:Glucagon is secreted from pancreatic α-cells, and hypersecretion (hyperglucagonemia) contributes to diabetic hyperglycemia. Molecular heterogeneity in hyperglucagonemia is poorly investigated. By screening human plasma by high-resolution-proteomics, we identified several glucagon variants among which proglucagon 1-61 (PG 1-61) appears to be the most abundant form. PG 1-61 was secreted in obese subjects before and as well after gastric bypass surgery with protein and fat as the main drivers for secretion before surgery, but glucose after. Studies in hepatocytes and in β-cells demonstrated that PG 1-61 dose-dependently increased levels of cAMP, through the glucagon receptor, and increased insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. As a consequence, PG 1-61 increased blood glucose and plasma insulin and decreased plasma levels of amino acids in vivo. Glucagon variants, such as PG 1-61, may contribute to glucose regulation by stimulating hepatic glucose production and insulin secretion.
Project description:To determine whether endothelial TFEB is critical for glucose metabolism in vivo, we utilized EC-selective TFEB knockout mice and EC selective TFEB transgenic mice fed a high fat diet (HFD). EC-TFEB knockout mice exhibited significantly impaired glucose tolerance compared with control mice. Consistently, EC-TFEB transgenic mice showed improved glucose intolerance. In primary human ECs, small interfering RNA-mediated TFEB knockdown blunts the Akt signaling. adenovirus-mediated overexpression of TFEB consistently activates Akt signaling and significantly increases glucose uptake in ECs. Mechanically, TFEB upregulates insulin receptor substrate 1 and 2 (IRS1 and IRS2). TFEB increases IRS2 transcription measured by reporter gene and chromatin immunoprecipitation assays. Furthermore, we found that TFEB increases IRS1 protein via downregulation of microRNAs (miR-335, miR-495 and miR548o). In vivo, Akt signaling in the skeletal muscle and adipose tissue was significantly impaired in EC-TFEB knockout mice and consistently improved in EC-TFEB transgenic mice on HFD
Project description:Insulin resistance not compensated by secretion reduces energy storage, but little is known about its effect upon energy expenditure (EE). Insulin receptor substrates Irs1 and Irs2 mediate signaling in all tissues, resulting in the inhibition of FoxO transcription factors. We found that hepatic disruption of Irs1 and Irs2 (LDKO mice) attenuated high-fat diet (HFD)-induced obesity and increased whole-body EE in a FoxO1-dependent manner. Hepatic disruption of Fst (follistatin), a FoxO1-regulated hepatokine, normalized EE in LDKO mice and restored adipose mass during HFD consumption. Moreover, hepatic Fst disruption alone increased fat mass accumulation, whereas hepatic overexpression of Fst attenuated high HFD-induced obesity. Excess circulating Fst in overexpressing mice neutralized Mstn (myostatin), activating mTORC1-promoted pathways of nutrient uptake and EE in skeletal muscle. Similar to Fst overexpression, direct activation of muscle mTORC1 also reduced adipose mass. We conclude that Fst-promoted EE in muscle attenuates obesity during hepatic insulin resistance.
Project description:The generation of pancreatic cell types from renewable cell sources holds promise for cell replacement therapies for diabetes. Although most effort has focused on generating pancreatic beta cells, there is considerable evidence that glucagon secreting alpha cells are critically involved in disease progression and proper glucose control. Here we report on the generation of stem cell-derived human pancreatic alpha (SC-alpha) cells from pluripotent stem cells via a transient pre-alpha cell intermediate. These pre-alpha cells exhibit a transcriptional profile similar to mature alpha cells and although they produce proinsulin protein, they do not secrete significant amounts of processed insulin. The resulting SC-alpha cells do not express insulin, share an ultrastructure similar to cadaveric alpha cells, express and secrete glucagon in response to glucose and some glucagon secretagogues, and elevate blood glucose upon transplantation in mice.
Project description:Glucagon and insulin are counter-regulatory pancreatic hormones that precisely control blood glucose homeostasis1. Type 2 diabetes mellitus (T2DM) is characterized by inappropriately elevated blood glucagon2-5 levels as well as insufficient glucose stimulated insulin secretion (GSIS) by pancreatic ß-cells6. Early in the pathogenesis of T2DM, hyperglucagonemia is observable antecedent to ß-cell dysfunction7-9; and in mice, liver-specific activation of glucagon receptor-dependent signaling results in impaired GSIS10. However, the mechanistic relationship between hyperglucagonemia, hepatic glucagon action, and ß-cell dysfunction remains poorly understood. Here we show that glucagon action stimulates hepatic production of the neuropeptide kisspeptin1, which acts in an endocrine manner on ß-cells to suppress GSIS. In vivo glucagon administration acutely stimulates hepatic kisspeptin1 production, and kisspeptin1 is increased in livers from humans with T2DM and from mouse models of diabetes mellitus. Synthetic kisspeptin1 potently suppresses GSIS in vivo and in vitro from normal isolated islets, which express the kisspeptin1 receptor Kiss1R. Administration of a Kiss1R antagonist in diabetic Leprdb/db mice potently augments GSIS and reduces glycemia. Our observations indicate in the pathogenesis of T2DM an endocrine mechanism sequentially linking hyperglucagonemia via hepatic kisspeptin1 production to impaired insulin secretion. In addition, our findings suggest Kiss1R antagonism as a therapeutic avenue to improve ß-cell function in T2DM. Total RNA from L-Δprkar1a KO mice compared to control D-glucose mice
Project description:Glucagon serves as an important regulatory hormone for regulating blood glucose concentrations with tight feedback control with insulin and glucose. There are critical gaps in our understanding of glucagon kinetics, pancreatic α cell function and intra-islet feedback network that are disrupted in type 1 diabetes. This is important for translational research applications of evolving dual-hormone (insulin+glucagon) closed-loop artificial pancreas algorithms and their usage in type 1 diabetes. Thus, it is important to accurately measure glucagon kinetics in vivo and to develop robust models of glucose-insulin-glucagon interplay that could inform next generation of artificial pancreas algorithms.
Project description:MafA and MafB transcription factors have been shown to be key regulators of insulin and glucagon transcription. MafB is essential for alpha and beta cell differentiation, as MafB deficient mice produced fewer insulin+ and glucagon+ cells during development, with MafA expressed in remaining insulin+ cells. In contrast, beta cell development was reported to be normal in a total MafA knock out, although the animals developed beta cell dysfunction and diabetes as adults. However, we have found that MafB expression is elevated during development and retained in adult insulin+ cells after conditional removal of MafA in the pancreas. These studies will evaluate the broader significance of these insulin and glucagon regulators in alpha and beta cell development and function. Our efforts will focus on determining if the concerted actions of MafA and MafB factors are significant to beta cell formation, and we specifically plan to: Determine how alpha and beta cell differentiation is affected in MafA/MafB compound mutant mice during pancreas development. cDNA microarray studies (pancchip 6.0) with wild type, MafAKO, MafB-/-, and MafAKOMafB-/- mutant E18.5 pancreata will be performed to comprehensively identify genes controlled by MafA and MafB in developing alpha and beta cells.
Project description:Appropriate glucagon secretion from pancreatic alpha cells in response to hypoglycemia is an important component of maintaining glucose homeostasis. Dysregulated glucagon secretion leads to the delayed recovery from a hypoglycemic attack in type 1 diabetes patients which can be lethal. Although elucidating the precise mechanism of glucagon secretion in hypoglycemia is warranted, the underlying mechanism remains poorly understood.The present study provides evidence of the role of autophagy in glucagon secretion in hypoglycemia by demonstrating that autophagy regulates adrenergic stimulation of glucagon secretion downstream of beta2 adrenergic receptor. First, from the analyses of T1D human islets and the published database of scRNA-seq of T1D human alpha cells, we described autophagy pathways altered in T1D alpha cells. Second, we generated alpha cell-specific Atg7KO mice (alphaAtg7KO) and clarified that the lack of autophagy in alpha cells impairs the reactive glucagon secretion in acute hypoglycemia. Third, to interrogate the molecular mechanism of autophagy-mediated glucagon regulation, we analyzed top genes downregulated inT1D and T2D alpha cells and found the expression of beta2 adrenergic receptor showed significant down-regulation in T1D alpha cells. We confirmed the decreased expression of beta2 adrenergic receptor in alpha cells of the T1D pancreas section, the islets of alphaAtg7KO mice, and a murine alpha cell line with stable knockdown of Atg7. Furthermore, in vivo and ex vivo studies of alphaAtg7KO mice exhibited that lack of autophagy led to the loss of stimulatory effect of beta2-adrenergic signaling on glucagon secretion. Finally, we established the Atg7 knockdown model in sorted human alpha cells and confirmed the effect of autophagy on the expression of the beta2 adrenergic receptor. Together, our study provides novel insights into the regulatory role of autophagy in glucagon secretion in response to hypoglycemia and provides therapeutic options to achieve stable glycemic control in T1D patients.