Proteomics

Dataset Information

0

Proteomics in gastroparesis: Unique and overlapping protein signatures in diabetic and idiopathic gastroparesis


ABSTRACT: Background: Macrophage-based immune dysregulation plays a critical role in development of delayed gastric emptying in animal models of diabetes. Human studies have also revealed loss of anti-inflammatory macrophages and increased expression of genes associated with pro-inflammatory macrophages in full thickness gastric biopsies from gastroparesis patients. Aim: We aimed to determine broader protein expression (proteomics) and protein-based signaling pathways in full thickness gastric biopsies of diabetic (DG) and idiopathic gastroparesis (IG) patients. Additionally, we determined correlations between protein expressions, gastric emptying and symptoms. Methods: Full-thickness gastric antrum biopsies were obtained from nine DG, seven IG patients and five non-diabetic controls. Aptamer-based SomaLogic tissue scan that quantitatively identifies 1300 human proteins was used. Protein fold changes were computed, and differential expressions were calculated using Limma. Ingenuity Pathway Analysis and correlations were carried out. Multiple-testing corrected p-values <0.05 were considered statistically significant. Results: 73 proteins were differentially expressed in DG, 132 proteins in IG and 40 proteins were common to DG and IG. In both DG and IG, “Role of Macrophages, Fibroblasts and Endothelial Cells” was the most statistically significant altered pathway (DG FDR: 7.9x10-9; IG FDR: 6.3x10-12). In DG, properdin expression correlated with GCSI-bloating (r: -0.99, FDR: 0.02) and expressions of prostaglandin G/H synthase 2, protein kinase C zeta type and complement C2 correlated with 4 hr gastric retention (r: -0.97, FDR: 0.03 for all). No correlations were found between proteins and symptoms or gastric emptying in IG. Conclusions: Protein expression changes suggest a central role of macrophage-driven immune dysregulation and complement activation in gastroparesis.

ORGANISM(S): Homo sapiens

PROVIDER: GSE130672 | GEO | 2019/09/15

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2024-01-31 | GSE252126 | GEO
2018-09-03 | GSE115601 | GEO
2019-06-21 | GSE129398 | GEO
| PRJNA540941 | ENA
2020-12-31 | GSE139577 | GEO
| PRJNA475559 | ENA
2021-03-10 | GSE151496 | GEO
2021-03-10 | GSE151495 | GEO
| PRJNA743433 | ENA
2022-12-09 | GSE211105 | GEO