The role of archaeal histones in gene expression - a synthetic biology perspective [Escherichia coli RNA-seq]
Ontology highlight
ABSTRACT: Since their discovery, archaea have not only proven a fascinating domain in their own right, but also helped us understand the evolution and function of molecular components they share with bacteria or eukaryotes. Archaeal histones are homologous to their eukaryotic counterparts, but operate in a less constrained bacterial-like cellular environment and their role in transcription and genome function remains obscure. In order to understand how archaeal histones affect transcriptional processes, we induced expression of the two histones from the archaeon Methanothermus fervidus in a naive bacterial system (E. coli) that has not evolved to integrate this kind of proteins. We show, using a series of MNase digestion experiments, that these histones bind the bacterial genome and wrap DNA in vivo in a pattern consistent with a previously proposed multimerisation model, in a similar pattern observed natively. We correlate genome-wide occupancy maps and gene expression profiles in different phases of growth to show that – although expression of archaeal histones triggers morphological changes in E. coli – there appears to only be an indirect effect on transcription. Since their discovery, archaea have not only proven a fascinating domain in their own right, but also helped us understand the evolution and function of molecular components they share with bacteria or eukaryotes. Archaeal histones are homologous to their eukaryotic counterparts, but operate in a less constrained bacterial-like cellular environment and their role in transcription and genome function remains obscure. In order to understand how archaeal histones affect transcriptional processes, we induced expression of the two histones from the archaeon Methanothermus fervidus in a naive bacterial system (E. coli) that has not evolved to integrate this kind of proteins. We show, using a series of MNase digestion experiments, that these histones bind the bacterial genome and wrap DNA in vivo in a pattern consistent with a previously proposed multimerisation model, in a similar pattern observed natively. We correlate genome-wide occupancy maps and gene expression profiles in different phases of growth to show that – although expression of archaeal histones triggers morphological changes in E. coli – there appears to only be an indirect effect on transcription.
ORGANISM(S): Escherichia coli
PROVIDER: GSE130799 | GEO | 2019/12/03
REPOSITORIES: GEO
ACCESS DATA