Transcriptomics

Dataset Information

0

Prevalence of transcription promoters within archaeal operons and coding sequences


ABSTRACT: Despite knowledge of complex prokaryotic transcription mechanisms, generalized rules, such as the simplified organization of genes into operons with well-defined promoters and terminators, have played a significant role in systems analysis of regulatory logic in both bacteria and archaea. Here, we have investigated the prevalence of alternate regulatory mechanisms through genome-wide characterization of transcript structures of ~64% of all genes including putative non-coding RNAs in Halobacterium salinarum NRC-1. Our integrative analysis of transcriptome dynamics and protein-DNA interaction datasets revealed widespread environment-dependent modulation of operon architectures, transcription initiation and termination inside coding sequences, and extensive overlap in 3' ends of transcripts for many convergently transcribed genes. A significant fraction of these alternate transcriptional events correlate to binding locations of 11 transcription factors and regulators (TFs) inside operons and annotated genes - events usually considered spurious or non-functional. With experimental validation, we illustrate the prevalence of overlapping genomic signals in archaeal transcription, casting doubt on the general perception of rigid boundaries between coding sequences and regulatory elements This SuperSeries is composed of the SubSeries listed below.

ORGANISM(S): Halobacterium salinarum NRC-1

PROVIDER: GSE13150 | GEO | 2009/06/25

SECONDARY ACCESSION(S): PRJNA109729

REPOSITORIES: GEO

Similar Datasets

2010-05-17 | E-GEOD-13150 | biostudies-arrayexpress
| PRJNA109729 | ENA
2019-11-12 | PXD010126 | Pride
2021-08-20 | GSE168986 | GEO
2005-07-22 | GSE2975 | GEO
2005-07-22 | E-GEOD-2975 | biostudies-arrayexpress
2005-07-13 | E-SMDB-1388 | biostudies-arrayexpress
2019-07-01 | GSE122971 | GEO
2022-05-14 | GSE203032 | GEO
2016-04-02 | GSE79822 | GEO