Sustained reprioritization of metabolic pathways is associated with persistence and biofilm formation in non-typeable Haemophilus influenzae
Ontology highlight
ABSTRACT: We used an in vitro evolved strain of nontypeable Haemophilus influenzae (NTHI) to examine the metabolic contributions to persistence RNASeq analysis identified 55 transcripts that significantly changed in amount within in vitro biofilms formed by RM33, as compared to the parental strain. Expression of genes encoding all enzymes within the tryptophan and glycogen pathways was significantly increased in biofilms formed by RM33 and the parental strains. In addition, increases were observed in metabolite transport, adhesin production and DNA metabolism, while we observed pyruvate ato have a pivotal role in the metabolic pathways associated with persistence.
Project description:Nontypeable Haemophilus influenzae (NTHI) is an opportunistic pathogen that has an essential requirement for heme-iron acquisition and must overcome host nutritional immunity to survive and persist in the host. In this study we examine the metabolic contributions to persistence using the evolved NTHI strain, RM33. Quantitative analyses identified 29 proteins, 55 transcripts and 31 metabolites that significantly changed within in vitro biofilms formed by RM33.
Project description:Nontypeable Haemophilus influenzae (NTHi) is a commensal microorganism of the normal human nasopharyngeal flora, yet also an opportunistic pathogen of the upper and lower respiratory tracts. Changes in gene expression patterns in response to host microenvironments are likely critical for persistence. One such system of gene regulation is the ability to carefully regulate iron uptake. A central regulatory system that controls iron uptake, mediated by the ferric uptake regulator Fur, is present in multiple bacteria, including NTHi. To understand the regulation of iron homeostasis in NTHi, fur was deleted in the prototypic NTHi clinical isolate, 86-028NP. Using an NTHi-specific microarray, we identified genes whose expression was repressed or activated by Fur.
Project description:Transcriptome analysis of NTHi 86-028NPrpsL, NTHi 86-028NPrpsL∆fur, and NTHi 86-028NPrpsL∆fur(pT-fur) strains Nontypeable Haemophilus influenzae (NTHi) is a commensal microorganism of the normal human nasopharyngeal flora, yet also an opportunistic pathogen of the upper and lower respiratory tracts. Changes in gene expression patterns in response to host microenvironments are likely critical for survival. One such system of gene regulation is the ability to carefully regulate iron uptake. A central regulatory system that controls iron uptake, mediated by the ferric uptake regulator Fur, is present in multiple bacteria, including NTHi. To understand the regulation of iron homeostasis in NTHi, fur was deleted in the NTHi strain 86-028NPrpsL. Using RNA-Seq, we identified both protein-encoding and small RNA genes whose expression was repressed or activated by Fur. Overall design: These data comprise transcriptional anaylses of an rpsL mutant of 86-028NP, an isogenic fur mutant of 86-028NPrpsL and a complemented fur mutant strain. All strains were grown in defined medium containing 10 µg/ml human hemoglobin to mid-log phase. Cells were then harvested and RNA extracted. A total of three biological replicates were generated for these analyses. Analysis of transcriptomes using the Illumina HiSeq 2000 of three strains of nontypeable Haemophilus influenzae which include NTHi 86-028NPrpsL, NTHi 86-028NPrpsL∆fur, and NTHi 86-028NPrpsL∆fur(pT-fur) strains. For each strain three biological replicates were analyzed
Project description:Nontypeable Haemophilus influenzae (NTHi) is a commensal microorganism of the normal human nasopharyngeal flora, yet also an opportunistic pathogen of the upper and lower respiratory tracts. Changes in gene expression patterns in response to host microenvironments are likely critical for persistence. One such system of gene regulation is the ability to carefully regulate iron uptake. A central regulatory system that controls iron uptake, mediated by the ferric uptake regulator Fur, is present in multiple bacteria, including NTHi. To understand the regulation of iron homeostasis in NTHi, fur was deleted in the prototypic NTHi clinical isolate, 86-028NP. Using an NTHi-specific microarray, we identified genes whose expression was repressed or activated by Fur. These data comprise transcriptional anaylses of a pediatric isolate of NTHi (86-028NP) an rpsL mutant of 86-028NP, a fur mutant of 86-028NP and a fur mutant of 86-028NPrpsL. NTHi parent and fur mutant strains were grown in defined medium containing 10 M-BM-5g /ml human hemoglobin to mid-log phase. Cells were then harvested and RNA extracted. A total of four biological replicates were generated for these analyses.
Project description:Transcriptome analysis of NTHi 86-028NPrpsL, NTHi 86-028NPrpsL∆fur, and NTHi 86-028NPrpsL∆fur(pT-fur) strains Nontypeable Haemophilus influenzae (NTHi) is a commensal microorganism of the normal human nasopharyngeal flora, yet also an opportunistic pathogen of the upper and lower respiratory tracts. Changes in gene expression patterns in response to host microenvironments are likely critical for survival. One such system of gene regulation is the ability to carefully regulate iron uptake. A central regulatory system that controls iron uptake, mediated by the ferric uptake regulator Fur, is present in multiple bacteria, including NTHi. To understand the regulation of iron homeostasis in NTHi, fur was deleted in the NTHi strain 86-028NPrpsL. Using RNA-Seq, we identified both protein-encoding and small RNA genes whose expression was repressed or activated by Fur. Overall design: These data comprise transcriptional anaylses of an rpsL mutant of 86-028NP, an isogenic fur mutant of 86-028NPrpsL and a complemented fur mutant strain. All strains were grown in defined medium containing 10 µg/ml human hemoglobin to mid-log phase. Cells were then harvested and RNA extracted. A total of three biological replicates were generated for these analyses.
Project description:Non-typeable Haemophilus influenzae (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10µg/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended.
Project description:Nontypeable Haemophilus influenzae (NTHi) is a common causative organism of acute otitis media (AOM) in children. A human cDNA microarray comprising 30,968 human genome probes was used to evaluate the transcriptional changes that occur in peripheral blood mononuclear cells (PBMC) at the onset of clinical AOM caused by NTHi infection in children after comparison of microarray results with the pre-infection healthy stage of the same children.
Project description:Non-typeable Haemophilus influenzae (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10M-BM-5g/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended. 12 samples
Project description:Asthma is the most common chronic respiratory disease. Asthma that cannot be well controlled by steroid treatment is called steroid-resistant asthma. Steroid-resistant asthma accounts for only 5% of all asthma cases, but it accounts for 80% of asthma healthcare costs. Nontypeable Haemophilus influenzae (NTHi), as a Gram-negative bacterium, can release outer membrane vesicles (OMVs) and transfer biomolecules to host cells and the external environment by carrying lipopolysaccharides, proteins, peptidoglycans, outer membrane proteins, cell wall components, proteins, nucleic acids, ion metabolites, and signaling molecules. Thus, it plays a role in obtaining nutrition, stress, toxin delivery, adhesion, host immune surveillance evasion, and host immune response regulation. It becomes an essential way in bacterial pathogenesis. To further clarify whether NTHi OMVs could be inhaled to induce steroid-resistant asthma, we isolated and purified NTHi OMVs. In vivo experiments showed that NTHi OMVs could be inhaled and enter airway epithelial cells. Cosensitization with OVA induces steroid-resistant asthma in mice. Furthermore, through high-throughput sequencing, we found that the NTHi OMVs and OVA co-sensitized mice had significantly enriched inflammatory and immune-related signaling pathways, and the transcription and secretion of IL-1β were increased was the potential cause of SRA.
Project description:H. influenzae R2866 contains a phase-variable DNA methylase modA10, by virtue of 16 tetrameric repeats present after the start codon. Gain or loss of repeats during replication by slipped-strand mispairing can result in a non-functional reading frame. Microarray analyses of wild-type and insertionally inactivated modA were performed to determine genes affected by phase variable modification.