Single-cell ATAC-Seq of cells recruited to regenerative portions of large skin wounds.
Ontology highlight
ABSTRACT: Adult mammalian skin wound healing is typically accompanied by a fibrotic scar that impairs normal skin function and regeneration of skin appendages. Interestingly, however, in adult mice, large skin injuries exhibit de novo formation of hair follicles (HFs, a phenomenon termed wound-induced HF neogenesis) in the center of the wound. Our previous analysis provides compelling evidence suggesting that regional epigenetic changes within the mesenchymal cells of the skin may underlie the divergent response to wound healing. To test this directly, we performed single-cell Assay for Transposase-Accessible Chromatin using Sequencing (sc-ATAC-Seq) on cells isolated from the center of large wounds to identify regions of the genome that are becoming differentially accessible within upper (epithelial-interfacing) fibroblasts as they transition to induce new HFs compared to their lower dermal counterparts that adopt a fibrotic phenotype. Together, our data reveals the identity and dynamics of key coding, non-coding, and regulatory regions that underlie a wound responsive fibroblasts' transition to inductive neodermal condensate cells.
Project description:In this model, we integrate in vitro observations of macrophage/fibroblasts in coculture with hypoxia and inflammatory signals. We obtain conditions under which the wound healing process progresses normally or becomes fibrotic.
Project description:Overexpression of activin A by keratinocytes accelerates excisional wound healing in mice. Activin-promoted wound healing is mediated via the stroma, specifically by the wound immune cells and fibroblasts. To determine if activin A alters the gene expression profile of wound fibroblasts, we performed RNA-sequencing of fibroblasts FACS-sorted from excisional skin wounds of activin overexpressing mice. We found that activin induces a pro-fibrotic gene expression profile of these fibroblasts, leading to the upregulation of genes involved in collagen biosynthesis and remodeling.
Project description:Adult mammalian skin wound healing is typically accompanied by fibrotic scar that impairs normal skin function and regeneration of skin appendages. Interestingly, however, in adult mice, large severe skin injuries exhibit de novo formation of HFs following severe skin injuries (a phenomenon termed wound-induced HF neogenesis, WIHN). Understanding the competent cell types and molecular mechanisms that enable regenerative wound healing will be critical for developing treatments that restore skin function after injury. We described the existence of an adult bipotent hair follicle dermal stem cell (hfDSC) that functions to regenerate the connective tissue sheath and to populate the DP with new cells (Rahmani et al., 2014). Based on this, we hypothesized that the mesenchymal cells comprised within the neogenic HFs might originate from hfDSCs. To test this, we employed αSMACreERT2:ROSAYFP and Hic1CreERT2:TDTmt mice to examine the contribution of hfDSCs or hfDSCs and reticular/hypodermal progenitors, respectively, to the formation of neodermis and regeneration of de novo HFs. Mice received full-thickness excision wounds (>1 cm2) and then harvested at 18-140 days post-wounding (dpw). αSMA+ve and Hic1-lineage cells were activated upon wounding, migrated into the wound, and contributed to both DP and DS in almost all de novo-formed HFs. Surprisingly, hfDSCs contributed only a minority of cells (20%) to nascent DP cells, whereas Hic1-lineage cells generated >90% of the neogenic DP cells. In both cases, cells integrating into neogenic HF mesenchyme appeared to restore the hfDSC pool, since they repopulated the neogenic mesenchyme over successive regenerative hair cycles. Finally, using an ex vivo HF formation assay, we found that prospectively isolated extrafollicular Hic-lineage cells could participate in HF formation when exposed to a permissive environment. Our data reveal that despite their origin in the reticular/hypodermis, Hic1-lineage dermal progenitors are able to adopt a regenerative response during wound healing if provided with a permissive local environment.
Project description:Mammalian skin wounds heal by forming fibrotic scars. We report that reindeer antler velvet exhibits regenerative wound healing, whereas identical injury to back skin forms scar. This regenerative capacity was retained following ectopic transplantation of velvet to scar-forming sites. Single-cell mRNA/ATAC-Sequencing revealed that while uninjured velvet fibroblasts resembled human fetal fibroblasts, back skin fibroblasts were enriched in pro-inflammatory features resembling adult human fibroblasts. Injury elicited site-specific immune polarization; back skin fibroblasts amplified the immune response, whereas velvet fibroblasts adopted an immunosuppressive state leading to restrained myeloid maturation and hastened immune resolution ultimately enabling myofibroblast reversion to a regeneration-competent state. Finally, regeneration was blunted following application of back skin associated immunostimulatory signals or inhibition of pro-regenerative factors secreted exclusive to velvet fibroblasts. This study highlights a unique model to interrogate mechanisms underlying divergent healing outcomes and nominates both decoupling of stromal-immune crosstalk and reinforcement of pro-regenerative fibroblast programs to mitigate scar.
Project description:In adult mammals, skin wound healing has evolved to favor rapid repair through formation of fibrotic scar. Consequently, skin wounds are dysfunctional and lead to chronic disfigurement and disability, yet the biologic mechanisms that drive fibrosis and prevent tissue regeneration remain unknown. Here, we report that reindeer (Rangifer tarandus) antler velvet exhibits regenerative wound healing, whereas identical full-thickness injury in dorsal back skin forms fibrotic scar. This regenerative capacity is retained even following ectopic transplantation of velvet to a scar-forming site, demonstrating that this latent regenerative capacity is innate to velvet cells and independent of local factors derived from the growing antler. Single cell RNA-sequencing of uninjured skin revealed a marked divergence in resting fibroblast transcriptional states and immunomodulatory function. Uninjured velvet fibroblast shared a striking resemblance with human fetal fibroblasts whereas uninjured back skin fibroblasts exhibited an overrepresentation of pro-inflammatory genes resembling adult human fibroblasts. Identical skin injury resulted in site-specific fibroblast polarization; back fibroblasts exacerbated the inflammatory response, whereas velvet fibroblasts adopted an immunosuppressive state and reverted back to a regeneration-competent ground state. Consequently, velvet wounds exhibited reduced immune infiltrate, accelerated adoption of anti-inflammatory immune states and expedited resolution of immune response. This study demonstrates reindeer as a novel mammalian model to study adult skin regeneration (velvet) and scar formation (back skin) within the same animal. Our study underscores the importance of fibroblast heterogeneity in shaping local immune cell functions that ultimately polarize wound healing outcomes. Purposeful, acute modulation of fibroblast-mediated immune signaling represents an important therapeutic avenue to mitigate scar and improve wound healing.
Project description:Project abstract: In adult mammals, skin wound healing has evolved to favor rapid repair through the formation of fibrotic scar. These dermal scars are dysfunctional and may lead to chronic disfigurement and disability, yet the biologic mechanisms that drive fibrosis and prevent tissue regeneration remain unknown. Here, we report that reindeer (Rangifer tarandus) antler velvet exhibits regenerative wound healing, whereas identical full-thickness injury in dorsal back skin of the same animal forms fibrotic scar. This regenerative capacity is retained even following ectopic transplantation of velvet to a scar-forming site, demonstrating that this latent regenerative capacity is innate to velvet cells and independent of local factors derived from the growing antler. Single cell RNA-sequencing of uninjured skin revealed a marked divergence in resting fibroblast transcriptional states and immunomodulatory function. Uninjured velvet fibroblast shared a striking resemblance with human fetal fibroblasts whereas uninjured back skin fibroblasts exhibited an overrepresentation of pro-inflammatory genes resembling adult human fibroblasts. Identical skin injury resulted in site-specific fibroblast polarization; back fibroblasts exacerbated the inflammatory response, whereas velvet fibroblasts adopted an immunosuppressive state and reverted back to a regeneration-competent ground state. Consequently, velvet wounds exhibited an accelerated adoption of anti-inflammatory immune states and an expedited resolution of immune response. This study demonstrates reindeer as a novel comparative mammalian model to study both adult skin regeneration (velvet) and scar formation (back skin) within the same animal. Our study underscores the importance of fibroblast heterogeneity in shaping local immune cell functions that ultimately polarize wound healing outcomes. Purposeful, acute modulation of fibroblast-mediated immune signaling represents an important therapeutic avenue to mitigate scar and improve wound healing.
Project description:In adult mammals, skin wound healing has evolved to favor rapid repair through the formation of fibrotic scar. These dermal scars are dysfunctional and may lead to chronic disfigurement and disability, yet the biologic mechanisms that drive fibrosis and prevent tissue regeneration remain unknown. Here, we report that reindeer (Rangifer tarandus) antler velvet exhibits regenerative wound healing, whereas identical full-thickness injury in dorsal back skin of the same animal forms fibrotic scar. This regenerative capacity is retained even following ectopic transplantation of velvet to a scar-forming site, demonstrating that this latent regenerative capacity is innate to velvet cells and independent of local factors derived from the growing antler. Single cell RNA-sequencing of uninjured skin revealed a marked divergence in resting fibroblast transcriptional states and immunomodulatory function. Uninjured velvet fibroblast shared a striking resemblance with human fetal fibroblasts whereas uninjured back skin fibroblasts exhibited an overrepresentation of pro-inflammatory genes resembling adult human fibroblasts. Identical skin injury resulted in site-specific fibroblast polarization; back fibroblasts exacerbated the inflammatory response, whereas velvet fibroblasts adopted an immunosuppressive state and reverted back to a regeneration-competent ground state. Consequently, velvet wounds exhibited an accelerated adoption of anti-inflammatory immune states and an expedited resolution of immune response. This study demonstrates reindeer as a novel comparative mammalian model to study both adult skin regeneration (velvet) and scar formation (back skin) within the same animal. Our study underscores the importance of fibroblast heterogeneity in shaping local immune cell functions that ultimately polarize wound healing outcomes. Purposeful, acute modulation of fibroblast-mediated immune signaling represents an important therapeutic avenue to mitigate scar and improve wound healing.
Project description:In adult mammals, skin wound healing has evolved to favor rapid repair through the formation of fibrotic scar. These dermal scars are dysfunctional and may lead to chronic disfigurement and disability, yet the biologic mechanisms that drive fibrosis and prevent tissue regeneration remain unknown. Here, we report that reindeer (Rangifer tarandus) antler velvet exhibits regenerative wound healing, whereas identical full-thickness injury in dorsal back skin of the same animal forms fibrotic scar. This regenerative capacity is retained even following ectopic transplantation of velvet to a scar-forming site, demonstrating that this latent regenerative capacity is innate to velvet cells and independent of local factors derived from the growing antler. Single cell RNA-sequencing of uninjured skin revealed a marked divergence in resting fibroblast transcriptional states and immunomodulatory function. Uninjured velvet fibroblast shared a striking resemblance with human fetal fibroblasts whereas uninjured back skin fibroblasts exhibited an overrepresentation of pro-inflammatory genes resembling adult human fibroblasts. Identical skin injury resulted in site-specific fibroblast polarization; back fibroblasts exacerbated the inflammatory response, whereas velvet fibroblasts adopted an immunosuppressive state and reverted back to a regeneration-competent ground state. Consequently, velvet wounds exhibited an accelerated adoption of anti-inflammatory immune states and an expedited resolution of immune response. This study demonstrates reindeer as a novel comparative mammalian model to study both adult skin regeneration (velvet) and scar formation (back skin) within the same animal. Our study underscores the importance of fibroblast heterogeneity in shaping local immune cell functions that ultimately polarize wound healing outcomes. Purposeful, acute modulation of fibroblast-mediated immune signaling represents an important therapeutic avenue to mitigate scar and improve wound healing.
Project description:In adult mammals, skin wound healing has evolved to favor rapid repair through the formation of fibrotic scar. These dermal scars are dysfunctional and may lead to chronic disfigurement and disability, yet the biologic mechanisms that drive fibrosis and prevent tissue regeneration remain unknown. Here, we report that reindeer (Rangifer tarandus) antler velvet exhibits regenerative wound healing, whereas identical full-thickness injury in dorsal back skin of the same animal forms fibrotic scar. This regenerative capacity is retained even following ectopic transplantation of velvet to a scar-forming site, demonstrating that this latent regenerative capacity is innate to velvet cells and independent of local factors derived from the growing antler. Single cell RNA-sequencing of uninjured skin revealed a marked divergence in resting fibroblast transcriptional states and immunomodulatory function. Uninjured velvet fibroblast shared a striking resemblance with human fetal fibroblasts whereas uninjured back skin fibroblasts exhibited an overrepresentation of pro-inflammatory genes resembling adult human fibroblasts. Identical skin injury resulted in site-specific fibroblast polarization; back fibroblasts exacerbated the inflammatory response, whereas velvet fibroblasts adopted an immunosuppressive state and reverted back to a regeneration-competent ground state. Consequently, velvet wounds exhibited an accelerated adoption of anti-inflammatory immune states and an expedited resolution of immune response. This study demonstrates reindeer as a novel comparative mammalian model to study both adult skin regeneration (velvet) and scar formation (back skin) within the same animal. Our study underscores the importance of fibroblast heterogeneity in shaping local immune cell functions that ultimately polarize wound healing outcomes. Purposeful, acute modulation of fibroblast-mediated immune signaling represents an important therapeutic avenue to mitigate scar and improve wound healing.
Project description:This SuperSeries is composed of the SubSeries listed below. Project abstract: In adult mammals, skin wound healing has evolved to favor rapid repair through the formation of fibrotic scar. These dermal scars are dysfunctional and may lead to chronic disfigurement and disability, yet the biologic mechanisms that drive fibrosis and prevent tissue regeneration remain unknown. Here, we report that reindeer (Rangifer tarandus) antler velvet exhibits regenerative wound healing, whereas identical full-thickness injury in dorsal back skin of the same animal forms fibrotic scar. This regenerative capacity is retained even following ectopic transplantation of velvet to a scar-forming site, demonstrating that this latent regenerative capacity is innate to velvet cells and independent of local factors derived from the growing antler. Single cell RNA-sequencing of uninjured skin revealed a marked divergence in resting fibroblast transcriptional states and immunomodulatory function. Uninjured velvet fibroblast shared a striking resemblance with human fetal fibroblasts whereas uninjured back skin fibroblasts exhibited an overrepresentation of pro-inflammatory genes resembling adult human fibroblasts. Identical skin injury resulted in site-specific fibroblast polarization; back fibroblasts exacerbated the inflammatory response, whereas velvet fibroblasts adopted an immunosuppressive state and reverted back to a regeneration-competent ground state. Consequently, velvet wounds exhibited an accelerated adoption of anti-inflammatory immune states and an expedited resolution of immune response. This study demonstrates reindeer as a novel comparative mammalian model to study both adult skin regeneration (velvet) and scar formation (back skin) within the same animal. Our study underscores the importance of fibroblast heterogeneity in shaping local immune cell functions that ultimately polarize wound healing outcomes. Purposeful, acute modulation of fibroblast-mediated immune signaling represents an important therapeutic avenue to mitigate scar and improve wound healing.