Tox reinforces the phenotype and longevity of exhausted T-cells in chronic viral infection [Bisulfite-Seq]
Ontology highlight
ABSTRACT: Chronic CD8 T-cell stimulation in persisting infections or tumors can induce a stable gene expression program, known as T-cell dysfunction or exhaustion, that limits the cell’s effector functions and anti-viral and anti-tumor immunity. Thus far, the underlaying molecular mechanisms that induce and stabilize this phenotype are vaguely understood. We report here that establishing this program requires the thymocyte selection-associated high mobility group-box protein (Tox). Genetic disruption of Tox augments effector function, decreases the expression of PD-1, and significantly enhances immunopathology. These changes are linked to a failure in fixing the dysfunctional phenotype in the critical Tcf1+ progenitor population and to impaired epigenetic programing. Surprisingly, the gains in effector function co-incide with declining numbers of Tcf1+ cells and result ultimately in reduced total numbers of pathogen-specific T-cells. Thus, we establish Tox as a critical factor for the development of T-cell dysfunction and establish a clear link between CD8 T-cell intrinsic suppression of effector function and protection against immune-pathology.
Project description:Chronic CD8 T-cell stimulation in persisting infections or tumors can induce a stable gene expression program, known as T-cell dysfunction or exhaustion, that limits the cell’s effector functions and anti-viral and anti-tumor immunity. Thus far, the underlaying molecular mechanisms that induce and stabilize this phenotype are vaguely understood. We report here that establishing this program requires the thymocyte selection-associated high mobility group-box protein (Tox). Genetic disruption of Tox augments effector function, decreases the expression of PD-1, and significantly enhances immunopathology. These changes are linked to a failure in fixing the dysfunctional phenotype in the critical Tcf1+ progenitor population and to impaired epigenetic programing. Surprisingly, the gains in effector function co-incide with declining numbers of Tcf1+ cells and result ultimately in reduced total numbers of pathogen-specific T-cells. Thus, we establish Tox as a critical factor for the development of T-cell dysfunction and establish a clear link between CD8 T-cell intrinsic suppression of effector function and protection against immune-pathology.
Project description:Chronic CD8 T-cell stimulation in persisting infections or tumors can induce a stable gene expression program, known as T-cell dysfunction or exhaustion, that limits the cell’s effector functions and anti-viral and anti-tumor immunity. Thus far, the underlaying molecular mechanisms that induce and stabilize this phenotype are vaguely understood. We report here that establishing this program requires the thymocyte selection-associated high mobility group-box protein (Tox). Genetic disruption of Tox augments effector function, decreases the expression of PD-1, and significantly enhances immunopathology. These changes are linked to a failure in fixing the dysfunctional phenotype in the critical Tcf1+ progenitor population and to impaired epigenetic programing. Surprisingly, the gains in effector function co-incide with declining numbers of Tcf1+ cells and result ultimately in reduced total numbers of pathogen-specific T-cells. Thus, we establish Tox as a critical factor for the development of T-cell dysfunction and establish a clear link between CD8 T-cell intrinsic suppression of effector function and protection against immune-pathology.
Project description:Chronic CD8 T-cell stimulation in persisting infections or tumors can induce a stable gene expression program, known as T-cell dysfunction or exhaustion, that limits the cell’s effector functions and anti-viral and anti-tumor immunity. Thus far, the underlaying molecular mechanisms that induce and stabilize this phenotype are vaguely understood. We report here that establishing this program requires the thymocyte selection-associated high mobility group-box protein (Tox). Genetic disruption of Tox augments effector function, decreases the expression of PD-1, and significantly enhances immunopathology. These changes are linked to a failure in fixing the dysfunctional phenotype in the critical Tcf1+ progenitor population and to impaired epigenetic programing. Surprisingly, the gains in effector function co-incide with declining numbers of Tcf1+ cells and result ultimately in reduced total numbers of pathogen-specific T-cells. Thus, we establish Tox as a critical factor for the development of T-cell dysfunction and establish a clear link between CD8 T-cell intrinsic suppression of effector function and protection against immune-pathology.
Project description:Chronic CD8 T-cell stimulation in persisting infections or tumors can induce a stable gene expression program, known as T-cell dysfunction or exhaustion, that limits the cell’s effector functions and anti-viral and anti-tumor immunity. Thus far, the underlaying molecular mechanisms that induce and stabilize this phenotype are vaguely understood. We report here that establishing this program requires the thymocyte selection-associated high mobility group-box protein (Tox). Genetic disruption of Tox augments effector function, decreases the expression of PD-1, and significantly enhances immunopathology. These changes are linked to a failure in fixing the dysfunctional phenotype in the critical Tcf1+ progenitor population and to impaired epigenetic programing. Surprisingly, the gains in effector function co-incide with declining numbers of Tcf1+ cells and result ultimately in reduced total numbers of pathogen-specific T-cells. Thus, we establish Tox as a critical factor for the development of T-cell dysfunction and establish a clear link between CD8 T-cell intrinsic suppression of effector function and protection against immune-pathology.
Project description:Chronic CD8 T-cell stimulation in persisting infections or tumors can induce a stable gene expression program, known as T-cell dysfunction or exhaustion, that limits the cell’s effector functions and anti-viral and anti-tumor immunity. Thus far, the underlaying molecular mechanisms that induce and stabilize this phenotype are vaguely understood. We report here that establishing this program requires the thymocyte selection-associated high mobility group-box protein (Tox). Genetic disruption of Tox augments effector function, decreases the expression of PD-1, and significantly enhances immunopathology. These changes are linked to a failure in fixing the dysfunctional phenotype in the critical Tcf1+ progenitor population and to impaired epigenetic programing. Surprisingly, the gains in effector function co-incide with declining numbers of Tcf1+ cells and result ultimately in reduced total numbers of pathogen-specific T-cells. Thus, we establish Tox as a critical factor for the development of T-cell dysfunction and establish a clear link between CD8 T-cell intrinsic suppression of effector function and protection against immune-pathology. The terms acute and chronic samples refer to P14 T-cells that were initially activated in acute LCMV (Armstrong) or chronic LCMV (clone-13) infections. 4 weeks later, the P14 T cells were collected, transferred into naive mice, and both then re-expanded in acute LCMV (Armstrong) infection. 8 days later P14 T-cells were collected and analysed.
Project description:Chronic CD8 T-cell stimulation in persisting infections or tumors can induce a stable gene expression program, known as T-cell dysfunction or exhaustion, that limits the cell’s effector functions and anti-viral and anti-tumor immunity. Thus far, the underlaying molecular mechanisms that induce and stabilize this phenotype are vaguely understood. We report here that establishing this program requires the thymocyte selection-associated high mobility group-box protein (Tox). Genetic disruption of Tox augments effector function, decreases the expression of PD-1, and significantly enhances immunopathology. These changes are linked to a failure in fixing the dysfunctional phenotype in the critical Tcf1+ progenitor population and to impaired epigenetic programing. Surprisingly, the gains in effector function co-incide with declining numbers of Tcf1+ cells and result ultimately in reduced total numbers of pathogen-specific T-cells. Thus, we establish Tox as a critical factor for the development of T-cell dysfunction and establish a clear link between CD8 T-cell intrinsic suppression of effector function and protection against immune-pathology. The term 'chronic' refers to P14 T-cells isolated from mice chronically infected with LCMV clone-13. 'Acute' are P14 T cells that were primed by in a specific LCMV-clone-13 infection setup in which P14 T cells are exposed to low antigen levels. In this setup, T cells retain a phenotype that resembles T-cells found in acutely resolved infection. Both samples were side by side compared.
Project description:HIV cure efforts are increasingly focused on harnessing CD8 T cell functions; however, a deeper understanding of CD8 T cells promoting HIV control is necessary to properly inform therapeutic approaches. Here, we identified a novel TOX-expressing CD8 T cell population associated with control of SIV infection in lymphoid tissue of rhesus macaques defined as an antigen-responsive TCF1+ CD39+ subset expressing high levels of TOX and inhibitory receptors but lower levels of canonical cytolytic molecules such as granzyme B, granzyme A, and perforin. Transcriptional analysis of SIV-specific CD8 T cells, as well as proteomic analysis of purified CD8 T cell subsets, revealed these TCF1+ CD39+ cells as an intermediate effector population retaining stem-like features while maintaining a lineage relationship with terminal effector cells. TCF1+ CD39+ CD8 T cells expressed higher levels of CXCR5 than terminally differentiated cells, were found at higher frequency in follicular micro-environments, and were preferentially located in the proximity of SIV-RNA+ cells both in lymph node T cell zone and B cell follicles. Importantly, their frequency was strongly associated with reduced plasma viremia and lower reservoir size. Finally, we confirmed the presence of a highly similar TOX-enriched TCF1+ CD39+ cell population in lymph node biopsies from ART-naïve and ART-treated people living with HIV. Collectively, these data identify a unique population of lymphoid CD8 T cells possessing both stem-like and effector properties that contribute to limiting HIV/SIV persistence.
Project description:HIV cure efforts are increasingly focused on harnessing CD8 T cell functions; however, a deeper understanding of CD8 T cells promoting HIV control is necessary to properly inform therapeutic approaches. Here, we identified a novel TOX-expressing CD8 T cell population associated with control of SIV infection in lymphoid tissue of rhesus macaques defined as an antigen-responsive TCF1+ CD39+ subset expressing high levels of TOX and inhibitory receptors but lower levels of canonical cytolytic molecules such as granzyme B, granzyme A, and perforin. Transcriptional analysis of SIV-specific CD8 T cells, as well as proteomic analysis of purified CD8 T cell subsets, revealed these TCF1+ CD39+ cells as an intermediate effector population retaining stem-like features while maintaining a lineage relationship with terminal effector cells. TCF1+ CD39+ CD8 T cells expressed higher levels of CXCR5 than terminally differentiated cells, were found at higher frequency in follicular micro-environments, and were preferentially located in the proximity of SIV-RNA+ cells both in lymph node T cell zone and B cell follicles. Their frequency was strongly associated with reduced plasma viremia and, importantly, lower size of the intact reservoir. Finally, we confirmed the presence of a highly similar TOX-enriched TCF1+ CD39+ cell population in lymph node biopsies from ART-naïve and ART-treated people living with HIV. Collectively, these data identify a unique population of lymphoid CD8 T cells possessing both stem-like and effector properties that contribute to limiting HIV/SIV persistence.
Project description:Stem-like CD8 + T cells are regulated by the transcription factor TCF1 and are key players in the response to immune checkpoint blockade (ICB). However, recent findings indicate that reliance on TCF1 + CD8 + stem-like T cells for ICB efficacy may not be equal across patients or tumor contexts. Here, we uncovered that TCF1-deficient CD8 + T cells showed defective priming in the tumor-draining lymph node of mice bearing poorly immunogenic tumors and that TCF1 regulates optimal T cell responsiveness to low TCR triggering. Importantly, we found that TCF1 was dispensable for therapy response in settings where ICB expanded intra-tumoral transitory effector-like cells. Conversely, TCF1 was required for ICB response in tumors that failed to expand cytotoxic effectors and accumulated Tox + dysfunctional T cells. In the absence of TCF1, dysfunctional T cells became destabilized and shared features with CD8 + T cells found in patients that fail ICB. Our study highlights a role for TCF1 in the early stages of the anti-tumor CD8 + T cell response with important implications for guiding optimal therapeutic interventions in cancers with low frequency of TCF1 + CD8 + T cells and low neoantigen levels.
Project description:Asymmetric cell division (ACD) and the strength of initial T cell receptor (TCR) signaling are both implied to contribute to the establishment of cellular heterogeneity and CD8 T cell effector and memory differentiation. However, on a single cell level it remained unclear whether ACD generates progeny of different fates and whether the strength of TCR signaling affects this mechanism. Therefore, we developed experimental systems allowing monitoring the fate of single daughter cell progenies derived from an ACD either induced by weak or strong TCR stimulation by in vitro live imaging. We used the combinatorial expression of TCF1 and CD62L as markers indicating fate specification a few days after activation and analyzed the transcriptional profiles of in vitro generated CD62L+TCF1+ and CD62L-TCF1- cells derived from either antibody-induced (AB) activation or from gp33 (high affinity) or C6 (low affinity) peptide stimulation and compared them to in vivo generated effector and memory cells, respectively. Therefore, we sorted CD62L+TCF1+ and CD62L-TCF1- cells on day 6 post activation, followed by bulk RNA sequencing and found that CD62L+TCF1+ cells transcriptionally resembled in vivo generated memory cells, whereas CD62L-TCF1- cells were similar to in vivo generated effector cells.