Transcriptome-Wide Combinatorial RNA Structure Probing in Living Cells with icSHAPE and icLASER
Ontology highlight
ABSTRACT: We design and test a novel di-azido LASER reagent capable enrichment through attachment of biotin with strain-promoted azide alkyne cycloaddition (SPAAC). We term this approach in vivo click LASER or icLASER. Aligned with the goal of extending transcriptome-wide measurements of RNA structure and to develop an approach that takes advantage of combinatorial RNA structure probing,we then use this novel bi-functional probe to interrogate LASER reactivity transcriptome-wide, revealing the first solvent accessibility transcriptome map. We also directly compare icSHAPE (hydroxyl acylation; flexibility) and icLASER (solvent accessibility) to demonstrate the power of utilizing them together to predict RNA-protein interactions and RNA polyadenylation.Our results demonstrate that combinatorial RNA structure probing can be employed to compliment orthogonal methods to better understand RNA structure and processing in cells transcriptome-wide.
ORGANISM(S): Homo sapiens
PROVIDER: GSE132099 | GEO | 2020/12/31
REPOSITORIES: GEO
ACCESS DATA