Oral air pollution exposure mediates diabetes by disrupting intestinal macrophage differentiation
Ontology highlight
ABSTRACT: We performed a single-cell transcriptome analysis of colon monocytes and macrophages in 2 control mice and 2 mice orally treated with diesel exhaust particles.
Project description:We performed a single-cell transcriptome analysis of colon monocytes and macrophages in 2 control mice and 2 mice orally treated with diesel exhaust particles.
Project description:The mechanisms by which diesel exhaust particles act as an adjuvant are unknown. We hypothesized that these would be mediated through monocyte interactions with DEP. We sought to identify pathways with a role in inflammation or other signaling mechanisms that might demonstrate the mechanism of response to DEP. Cultured human monocytes from healthy donors were cultured in the presence or absence of diesel exhaust particles. RNA was extracted following culture to determine changes in gene expression pathways.
Project description:Expression profile of E. coli BW25113 grown under standard laboratory atmosphere with a fine particulate matter (PM2.5) concentration of 17 mg m-3, under urban polluted atmosphere with a PM2.5 of 230 mg m-3 or under diesel exhaust atmosphere with a PM2.5 of 613 mg m-3. Expression profile of the diesel exhaust atmosphere-adapted E. coli strain T56-1 grown under diesel exhaust atmosphere.
Project description:There is an emerging concern that particulate air pollution increases the risk of cranial nerve disease onset. Small nanoparticles, mainly derived from diesel exhaust particles reach the olfactory bulb by their nasal depositions. It has been reported that diesel exhaust inhalation causes inflammation of the olfactory bulb and other brain regions. However, these toxicological studies have not evaluated animal rearing environment. We hypothesized that rearing environment can change mice phenotypes and thus might alter toxicological study results. In this study, we exposed mice to diesel exhaust inhalation at 90 micro g/m3, 8 hours/day, for 28 consecutive days after rearing in a standard cage or environmental enrichment conditions. Microarray analysis found that expression levels of 112 genes were changed by diesel exhaust inhalation. Functional analysis using Gene Ontology revealed that the dysregulated genes were involved in inflammation and immune response. This result was supported by pathway analysis. Quantitative RT-PCR analysis confirmed 10 genes. Interestingly, background gene expression of the olfactory bulb of mice reared in a standard cage environment was changed by diesel exhaust inhalation, whereas there was no significant effect of diesel exhaust exposure on gene expression levels of mice reared with environmental enrichment. The results indicate for the first time that the effect of diesel exhaust exposure on gene expression of the olfactory bulb was influenced by rearing environment. Rearing environment, such as environmental enrichment, may be an important contributive factor to causation in evaluating still undefined toxic environmental substances such as diesel exhaust. RNA sample was taken from olfactory bulb of 56-day-old mouse received diesel exhaust (DE) inhalation at 90 micro g/m3, 8 hours/day, for 28 consecutive days, while control RNA was taken from mouse received clean air, after rearing in a standard cage or environmental enrichment conditions. Comparisons among groups were made by one-color method with normalized data from Cy3 channels for data analysis.
Project description:Air pollution is an environmental risk factor linked to multiple human diseases including cardiovascular diseases (CVDs). While particulate matter (PM) emitted by diesel exhaust damages multiple organ systems, heart disease is one of the most severe pathologies affected by PM. However, the in vivo effects of diesel exhaust particles (DEP) on the heart and the molecular mechanisms of DEP-induced heart dysfunction have not been investigated. In the current study, we attempted to identify the proteomic signatures of heart fibrosis caused by diesel exhaust particles (DEP) in CVDs-prone apolipoprotein E knockout (ApoE-/-) mice model using tandem mass tag (TMT)-based quantitative proteomic analysis. DEP exposure induced mild heart fibrosis in ApoE-/- mice compared with severe heart fibrosis in ApoE-/- mice that were treated with CVDs-inducing peptide, angiotensin II. TMT-based quantitative proteomic analysis of heart tissues between PBS- and DEP-treated ApoE-/- mice revealed significant upregulation of proteins associated with platelet activation and TGFβ-dependent pathways. Our data suggest that DEP exposure could induce heart fibrosis, potentially via platelet-related pathways and TGFβ induction, causing cardiac fibrosis and dysfunction.
Project description:There is an emerging concern that particulate air pollution increases the risk of cranial nerve disease onset. Small nanoparticles, mainly derived from diesel exhaust particles reach the olfactory bulb by their nasal depositions. It has been reported that diesel exhaust inhalation causes inflammation of the olfactory bulb and other brain regions. However, these toxicological studies have not evaluated animal rearing environment. We hypothesized that rearing environment can change mice phenotypes and thus might alter toxicological study results. In this study, we exposed mice to diesel exhaust inhalation at 90 micro g/m3, 8 hours/day, for 28 consecutive days after rearing in a standard cage or environmental enrichment conditions. Microarray analysis found that expression levels of 112 genes were changed by diesel exhaust inhalation. Functional analysis using Gene Ontology revealed that the dysregulated genes were involved in inflammation and immune response. This result was supported by pathway analysis. Quantitative RT-PCR analysis confirmed 10 genes. Interestingly, background gene expression of the olfactory bulb of mice reared in a standard cage environment was changed by diesel exhaust inhalation, whereas there was no significant effect of diesel exhaust exposure on gene expression levels of mice reared with environmental enrichment. The results indicate for the first time that the effect of diesel exhaust exposure on gene expression of the olfactory bulb was influenced by rearing environment. Rearing environment, such as environmental enrichment, may be an important contributive factor to causation in evaluating still undefined toxic environmental substances such as diesel exhaust.
Project description:Secretomics analysis of conditioned media from first trimester/term human placental explant cultures after exposure to SiO2, TiO2 nanoparticles (NPs) (25 μg/mL) or diesel exhaust particles (DEPs, 0.45 μg/mL)using LC-MS/MS based label-free quantification (LFQ) analysis.
Project description:We performed single-cell RNA sequencing on CD45+ cells isolated from the lungs of C57BL/6 mice exposed to diesel exhaust particles via inhalation. The objective was to investigate which immune cells respond to particulate matter exposure.