53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination (END-seq)
Ontology highlight
ABSTRACT: 53BP1 activity drives genome instability and embryonic lethality in BRCA1-deficient cells by inhibiting homologous recombination (HR).53BP1’s anti-recombinogenic functions require phosphorylation-dependent interactions with two effector complexes, PTIP and RIF1/Shieldin. While RIF1/Shieldin is thought to block 5’-3’ nucleolytic processing of DNA ends, it remains unclear how PTIP antagonizes HR. Here we show that mutation of the PTIP interaction site in 53BP1 (S25A) increases Shieldin association with DNA damage. Despite excessive Shieldin “end-blocking” activity, the mutant protein allows end resection sufficient to rescue the lethality of BRCA1D11 mice. End resection in BRCA1D1153BP1S25A mice is rewired in a manner driven by DNA2 since Shieldin blocks EXO1-mediated nucleolytic processing. Despite ample resection, mutant cells fail to complete HR, as 53BP1/Shieldin also inhibits RNF168-mediated loading of PALB2/RAD51 onto ssDNA post-resection. As a result, BRCA1D1153BP1S25A mice exhibit hallmark features of HR insufficiency, including increased developmental neuronal apoptosis, premature aging and hypersensitivity to PARP inhibitors. Disruption of Shieldin or forced targeting of PALB2 to ssDNA in BRCA1D1153BP1S25A cells restores RNF168 recruitment, RAD51 nucleofilament formation, and PARPi resistance. Our study supports a model in which RIF1/Shieldin and PTIP associate independently with 53BP1 to regulate distinct end-resection pathways, and reveals a critical function of 53BP1/Shieldin post-resection that limits RNF168-mediated loading of RAD51.
Project description:53BP1 activity drives genome instability and embryonic lethality in BRCA1-deficient cells by inhibiting homologous recombination (HR).53BP1’s anti-recombinogenic functions require phosphorylation-dependent interactions with two effector complexes, PTIP and RIF1/Shieldin. While RIF1/Shieldin is thought to block 5’-3’ nucleolytic processing of DNA ends, it remains unclear how PTIP antagonizes HR. Here we show that mutation of the PTIP interaction site in 53BP1 (S25A) increases Shieldin association with DNA damage. Despite excessive Shieldin “end-blocking” activity, the mutant protein allows end resection sufficient to rescue the lethality of BRCA1D11 mice. End resection in BRCA1D1153BP1S25A mice is rewired in a manner driven by DNA2 since Shieldin blocks EXO1-mediated nucleolytic processing. Despite ample resection, mutant cells fail to complete HR, as 53BP1/Shieldin also inhibits RNF168-mediated loading of PALB2/RAD51 onto ssDNA post-resection. As a result, BRCA1D1153BP1S25A mice exhibit hallmark features of HR insufficiency, including increased developmental neuronal apoptosis, premature aging and hypersensitivity to PARP inhibitors. Disruption of Shieldin or forced targeting of PALB2 to ssDNA in BRCA1D1153BP1S25A cells restores RNF168 recruitment, RAD51 nucleofilament formation, and PARPi resistance. Our study supports a model in which RIF1/Shieldin and PTIP associate independently with 53BP1 to regulate distinct end-resection pathways, and reveals a critical function of 53BP1/Shieldin post-resection that limits RNF168-mediated loading of RAD51.
Project description:53BP1 regulates DNA end-joining in lymphocytes, diversifying immune antigen receptors. This involves nucleosome-bound 53BP1 at DNA double-stranded breaks (DSBs) recruiting RIF1 and shieldin, a poorly understood DNA-binding complex. The 53BP1-RIF1-shieldin axis is pathological in BRCA1-mutated cancers, blocking homologous recombination (HR) and driving illegitimate non-homologous end-joining (NHEJ). However, how this axis regulates DNA end-joining and HR suppression remains unresolved. We investigated shieldin and its interplay with CST, a complex recently implicated in 53BP1-dependent activities. Immunophenotypically, mice lacking shieldin or CST are equivalent, with class-switch recombination co-reliant on both complexes. DNA damage-responsive signalling promotes shieldin-CST interaction, demonstrating shieldin as a DSB-specific CST adaptor. Furthermore, DNA polymerase ζ functions downstream of shieldin, establishing DNA fill-in synthesis as the physiological function of shieldin-CST. Lastly, 53BP1 suppresses HR and promotes NHEJ in BRCA1-deficient cells independently of shieldin. These findings showcase the resilience of the 53BP1 pathway, achieved through the collaboration of chromatin-bound 53BP1 complexes and DNA end-processing effector proteins.
Project description:The 53BP1-RIF1 pathway antagonizes resection of DNA broken ends and confers PARP inhibitor sensitivity on BRCA1-mutated tumors. However, it is unclear how this pathway suppresses initiation of resection. Here, we identify ASF1 as a partner of RIF1 via an interacting manner similar to its interactions with histone chaperones CAF-1 and HIRA. ASF1 is recruited to distal chromatin flanking DNA breaks by 53BP1-RIF1 and promotes non-homologous end joining (NHEJ) using its histone chaperone activity. Epistasis analysis shows that ASF1 acts in the same NHEJ pathway as RIF1, but via a parallel pathway with the shieldin complex, which suppresses resection after initiation. Moreover, defects in end resection and homologous recombination (HR) in BRCA1-deficient cells are largely suppressed by ASF1 deficiency. Mechanistically, ASF1 compacts adjacent chromatin by heterochromatinization to protect broken DNA ends from BRCA1-mediated resection. Taken together, our findings identified a RIF1-ASF1 histone chaperone complex that promotes changes in high-order chromatin structure to stimulate the NHEJ pathway for DSB repair.
Project description:DNA double-strand breaks (DSBs) represent a threat to the genome because they can lead to loss of genetic information and chromosome rearrangements. The DNA repair protein p53 binding protein 1 (53BP1) protects the genome by limiting nucleolytic processing of DSBs by a mechanism that requires its phosphorylation, but whether it does so directly is not known. Here we identify Rapl-interacting factor 1 (Rif1) as an Ataxia-Telangiectasia Mutated (ATM) phosphorylation-dependent interactor of 53BP1, and show that absence of Rif1 results in 5M-bM-^@M-^Y-3M-bM-^@M-^Y DNA end resection in mice. Consistent with enhanced DNA resection, Rif1 deficiency impairs DNA repair in the G1 and S phases of the cell cycle, interferes with class switch recombination (CSR) in B lymphocytes, and leads to accumulation of chromosome DSBs. Study of Rif1 DNA-end protection activity against resection via analysis of single-stranded DNA binding protein RPA and Rad51 accumulation at sites of AID-induced DNA damage by ChIP-seq. All samples shown in Fig. 4 are included (controls and test samples, 7 samples in total).
Project description:BRCA1 deficiencies cause breast, ovarian and other cancers, and render tumours hypersensitive to PARP-inhibitors. To understand resistance mechanisms, we conducted whole-genome CRISPR-Cas9 synthetic-viability/resistance screens in BRCA1-deficient breast cancer cells treated with PARP-inhibitors. Thus, we identified two previously uncharacterized proteins, C20orf196 and FAM35A, whose inactivation confers strong PARP-inhibitor resistance. Mechanistically, we show that C20orf196 and FAM35A form a complex, termed “Shieldin” (SHLD1/2), with FAM35A interacting with single-stranded DNA via its C-terminal OB-fold region. We establish that Shieldin promotes DNA double-strand break (DSB) end-joining, acting as the downstream effector of 53BP1/RIF1/MAD2L2 to restrict DSB resection and counteract homologous recombination in BRCA1-deficient cells by antagonising BRCA2/RAD51 loading. Notably, Shieldin inactivation further sensitises BRCA1-deficient cells to cisplatin, suggesting how defining the SHLD1/2 status of BRCA1-deficient tumours might aid patient stratification and yield new treatment opportunities. Highlighting this potential, we document reduced SHLD1/2 expression in human breast cancers displaying intrinsic or acquired PARP-inhibitor resistance.
Project description:Double-strand break (DSB) repair choice is greatly influenced by the initial processing of DNA ends. 53BP1 limits the formation of recombinogenic single strand DNA (ssDNA) in BRCA1-deficient cells leading to defects in homologous recombination (HR). However, the exact mechanisms by which 53BP1 inhibits DSB resection remain unclear. Previous studies have identified two potential pathways: protection against exonucleases presumably through the Shieldin (SHLD) complex binding to ssDNA, and localized DNA synthesis through the (CTC1-STN1-TEN1) CST and DNA polymerase alpha (Polα) to counteract resection. We present evidence here that 53BP1-mediated exonuclease protection plays a more significant role than CST/Polα synthesis in countering hyper-resection at DSBs in G1 phase. Using a combinatorial approach of END-seq, SAR-seq, and RPA ChIP-seq, we directly assessed the extent of resection, DNA synthesis, and ssDNA, respectively, at AsiSI-induced DSBs. We show that in the presence of 53BP1, Polα-dependent DNA synthesis reduces the fraction of resected DSBs and the resection lengths. However, in the absence of 53BP1, Polα activity is sustained on ssDNA yet does not substantially counter resection. In contrast, Exo1 nuclease activity is essential for hyperresection in the absence of 53BP1. Thus, 53BP1 inhibits resection mainly through end-protection rather than by promoting fill-in.
Project description:Double-strand break (DSB) repair choice is greatly influenced by the initial processing of DNA ends. 53BP1 limits the formation of recombinogenic single strand DNA (ssDNA) in BRCA1-deficient cells leading to defects in homologous recombination (HR). However, the exact mechanisms by which 53BP1 inhibits DSB resection remain unclear. Previous studies have identified two potential pathways: protection against exonucleases presumably through the Shieldin (SHLD) complex binding to ssDNA, and localized DNA synthesis through the (CTC1-STN1-TEN1) CST and DNA polymerase alpha (Polα) to counteract resection. We present evidence here that 53BP1-mediated exonuclease protection plays a more significant role than CST/Polα synthesis in countering hyper-resection at DSBs in G1 phase. Using a combinatorial approach of END-seq, SAR-seq, and RPA ChIP-seq, we directly assessed the extent of resection, DNA synthesis, and ssDNA, respectively, at AsiSI-induced DSBs. We show that in the presence of 53BP1, Polα-dependent DNA synthesis reduces the fraction of resected DSBs and the resection lengths. However, in the absence of 53BP1, Polα activity is sustained on ssDNA yet does not substantially counter resection. In contrast, Exo1 nuclease activity is essential for hyperresection in the absence of 53BP1. Thus, 53BP1 inhibits resection mainly through end-protection rather than by promoting fill-in.
Project description:Double-strand break (DSB) repair choice is greatly influenced by the initial processing of DNA ends. 53BP1 limits the formation of recombinogenic single strand DNA (ssDNA) in BRCA1-deficient cells leading to defects in homologous recombination (HR). However, the exact mechanisms by which 53BP1 inhibits DSB resection remain unclear. Previous studies have identified two potential pathways: protection against exonucleases presumably through the Shieldin (SHLD) complex binding to ssDNA, and localized DNA synthesis through the (CTC1-STN1-TEN1) CST and DNA polymerase alpha (Polα) to counteract resection. We present evidence here that 53BP1-mediated exonuclease protection plays a more significant role than CST/Polα synthesis in countering hyper-resection at DSBs in G1 phase. Using a combinatorial approach of END-seq, SAR-seq, and RPA ChIP-seq, we directly assessed the extent of resection, DNA synthesis, and ssDNA, respectively, at AsiSI-induced DSBs. We show that in the presence of 53BP1, Polα-dependent DNA synthesis reduces the fraction of resected DSBs and the resection lengths. However, in the absence of 53BP1, Polα activity is sustained on ssDNA yet does not substantially counter resection. In contrast, Exo1 nuclease activity is essential for hyperresection in the absence of 53BP1. Thus, 53BP1 inhibits resection mainly through end-protection rather than by promoting fill-in.
Project description:RIF1 is a multifunctional protein that plays key roles in the regulation of DNA processing. During repair of DNA double-strand breaks (DSBs), RIF1 functions in the 53BP1-Shieldin pathway that inhibits resection of DNA ends to modulate the cellular decision on which repair pathway to engage. Under conditions of replication stress, RIF1 protects nascent DNA at stalled replication forks from degradation by the DNA2 nuclease. How these RIF1 activities are regulated at the post-translational level has not yet been elucidated. Here, we identified a cluster of conserved ATM/ATR consensus SQ motifs within the intrinsically disordered region (IDR) of mouse RIF1 that are phosphorylated in proliferating B lymphocytes. We found that phosphorylation of the conserved IDR SQ cluster is dispensable for the inhibition of DSB resection by RIF1, but is essential to counteract DNA2-dependent degradation of nascent DNA at stalled replication forks. Therefore, our study identifies a key molecular feature that enables the genome-protective function of RIF1 during DNA replication stress.
Project description:RIF1 acts downstream of 53BP1 to coordinate DNA double strand break repair pathway choice between non-homologous end joining (NHEJ) and homologous recombination (HR). Here we identified ASF1 as an endogenous RIF1-associated protein. We showed that ASF1 forms complex with RIF1 and regulates RIF1-dependent functions in DNA damage response.