TBX2 regulated genes in cultured human myometrial cells
Ontology highlight
ABSTRACT: Preterm birth, defined as delivery before the 37th week of gestation, is the most common cause of neonatal mortality and the second leading cause of death in children under five years of age. Preterm birth is associated with immediate and long term morbidity as well as growth and developmental delay. The lack of access to human myometrial samples during ongoing uncomplicated pregnancy seriously hampers proper understanding of the sequence of events leading to parturition initiation. In our previous work we used mouse as a model and profiled gene expression in mouse uterus from early E6.5 to late gestation E17.5. We identified Tbx2 as one of the putative upstream regulators during mid-gestation (E10.5, E12.5, E15.5). The role of TBX2 in human myometrium has not been investigated. In this study we identify the gene targets of TBX2 by overexpressing TBX2 in cultured telomerase immortalised myometrial cells followed by gene expression profiling using microarrays.
Project description:Preterm birth is multifactorial in origin with several distinct clinical phenotypes of differing etiologies, including idiopathic preterm birth. Preterm birth involves the interaction of genetic, societal and environmental factors such as nutrition, lifestyle and stress that may modulate the length of gestation via the epigenome. DNA methylation is a well-studied epigenetic modification whereby promoter methylation commonly represses gene expression and vice versa. Myometrial tissue was obtained at cesarean section at term with or without labor, preterm without labor, idiopathic preterm labor, and twin gestations with labor. Differences in the myometrial epigenomes were identified at gene promoters, CpG islands, CpG island shores and shelves, gene bodies across the genome between the groups of women with preterm labor of different phenotypes vs. normal term labor. Functional clustering analysis indicated the significantly enriched pathways of hypomethylated genes (permissive) were related to acute inflammatory and acute-phase responses. By contrast, genes that are hypermethylated (repressive) revealed enrichment for contractile fibers and cell. This study provides the first high-resolution DNA methylome of human myometrium with evidence for differences in the methylome that may relate to idiopathic preterm birth via regulation of gene expression. The findings extend previous observations that idiopathic preterm labor is associated with subclinical intrauterine infection and inflammatory pathways and point to targets for further molecular characterization of preterm delivery. Comparison of the human myometrial epigenomes in pregnancies with preterm labor of different phenotypes vs. normal term labor
Project description:Preterm birth is the leading cause of infant morbidity and mortality. There has been interest in developing prostaglandin F2α (PGF2α) antagonists as a new treatment for preterm birth although much of the rationale for their use is based on studies in rodents where PGF2α initiates labour by regressing the corpus luteum and reducing systemic progesterone concentrations. How PGF2α antagonism would act in humans that do not have a fall in systemic progesterone remains unclear. One possibility, in addition to an acute stimulation of contractions, is a direct alteration of the myometrial smooth muscle cell state towards a pro-labour phenotype. In this study we developed an immortalised myometrial cell line, MYLA, derived from myometrial tissue obtained from a pregnant, non‐labouring patient as well as a novel class of PGF2α receptor (FP) antagonist. We verified the functionality of the cell line by stimulation with PGF2α, which resulted in Gαq specific coupling and Ca2+ release that were inhibited by FP antagonism. Compared to four published FP receptor antagonists, the novel FP antagonist N582707 was the most potent compound (Fmax 7.67 ± 0.63 (IC50 21.26 nM), AUC 7.30 ± 0.32 (IC50 50.43 nM) and frequency of Ca2+ oscillations 7.66 ± 0.41 (IC50 22.15 nM)). RNA‐sequencing of the MYLA cell line at 1, 3, 6, 12, 24 & 48 hours post PGF2α treatment revealed a transforming phenotype from a fibroblastic to smooth muscle mRNA profile. PGF2α treatment increased expression of MYLK, CALD1 and CNN1 as well as the pro-labour genes OXTR, IL6 and IL11 which were inhibited by FP antagonism. Concomitant with inhibition of a smooth muscle, pro-labour transition, FP antagonism increased the expression of the fibroblast marker genes DCN, FBLN1 and PDGFRA. Our findings suggest that in addition to the well described acute contractile effect, PGF2α transforms myometrial smooth muscle cells from a myofibroblast to smooth muscle, pro-labour like state, and that the novel compound N582707 has potential for prophylactic use in preterm labour management beyond its use as an acute tocolytic drug.
Project description:Timely control of parturition is crucial for maternal and fetal health. Failures on this biological process often result in pregnancy complications including preterm birth, labor dystocia, and health disorders on newborn babies. The myometrium is the muscular structure of the uterus maintaining uterine structural integrity and providing contractile force for parturition. The myometrial structure changes in adaptation to the pregnancy via stage-specific transcriptomic profiles. Progesterone signaling plays a crucial role in myometrial remodeling. The present study profiles the transcriptome of human myometrial specimens that are expected to manifest a wide spectrum of progesterone signaling via the RNAseq assay.
Project description:Distinct processes govern the transition from myometrial quiescence to activation during both term and preterm labor. We sought the specific gene sets responsible for initiating term and preterm labor, along with a core set of effector genes necessary for labor independent of gestational age and the underlying trigger. The Effector Gene Set consisted of 49 genes present in both preterm and term labor but absent from non-labor samples. 122 genes were specific to preterm labor (Preterm Initiator Set) and 229 to term labor (Term Initiator Set). The Term Initiator and the Effector Sets reflected predominantly inflammatory processes. Surprisingly, the Preterm Initiator Gene Set reflected molecular and biological events almost exclusive of inflammation. Preterm and term labor differ dramatically in their unique, initiator gene profiles, suggesting alternative pathways underlie these events. Inflammatory processes are ubiquitous to the Term Initiator and the Effector Gene Sets, supporting the idea term parturition is an inflammatory process. The absence of inflammatory processes in the Preterm Initiator Set suggests inflammation is secondary to processes triggering spontaneous preterm birth, and could explain the lack of therapeutic efficacy associated with anti inflammatory/antibiotic regimens. Keywords: myometrial gene expression, preterm versus term labor
Project description:Preterm birth, defined as birth <37 weeks of gestation, is a leading cause of infant morbidity and mortality. In the United States, approximately 12% of all births are preterm.1 Despite decades of research, there has been little progress in developing effective interventions to prevent preterm birth. In fact, the rate of preterm birth has increased slightly over the last several decades.2 The ultimate goal of the Genomic and Proteomic Network for Preterm Birth Research (GPN-PBR) is to identify possible biomarkers that could predict the susceptibility to spontaneous preterm birth (SPTB) as well as to shed light on the molecular mechanisms involved in its etiologies. Understanding those mechanisms will help us predict SPTB and may facilitate the introduction of more effective prevention and treatment strategies.
Project description:Timely control of parturition is crucial for maternal and fetal health. Failures on this biological process often result in pregnancy complications including preterm birth, labor dystocia, and health disorders on newborn babies. The myometrium is the muscular structure of the uterus maintaining uterine structural integrity and providing contractile force for parturition. The myometrial structure changes in adaptation to the pregnancy via stage-specific transcriptomic profiles. Data from the mouse model indicate that changes of myometrial epigenomic landscape precedes the adoption of stage-specific gene expression pattern at term. The present study documents the chromatin interaction profiles in the term pregnant not in labor human myometrial tissues at a genome-wide scale.
Project description:Timely control of parturition is crucial for maternal and fetal health. Failures on this biological process often result in pregnancy complications including preterm birth, labor dystocia, and health disorders on newborn babies. The myometrium is the muscular structure of the uterus maintaining uterine structural integrity and providing contractile force for parturition. The myometrial structure changes in adaptation to the pregnancy via stage-specific transcriptomic profiles. Data from the mouse model indicate that changes of myometrial epigenomic landscape precedes the adoption of stage-specific gene expression pattern at term. The present study documents the transcriptomic profile and putative enhancer landscape of term pregnant myometrial tissues.
Project description:Timely control of parturition is crucial for maternal and fetal health. Failures on this biological process often result in pregnancy complications including preterm birth, labor dystocia, and health disorders on newborn babies. The myometrium is the muscular structure of the uterus maintaining uterine structural integrity and providing contractile force for parturition. The myometrial structure changes in adaptation to the pregnancy via stage-specific transcriptomic profiles. Data from the mouse model indicate that changes of myometrial epigenomic landscape precedes the adoption of stage-specific gene expression pattern at term. The present study documents the transcriptomic profile and epigenomic landscape of term pregnant myometrial tissues and functionally characterize a subset of putative enhancers to further understand the enhancer-gene interaction in human the myometrium.
Project description:Timely control of parturition is crucial for maternal and fetal health. Failures on this biological process often result in pregnancy complications including preterm birth, labor dystocia, and health disorders on newborn babies. The myometrium is the muscular structure of the uterus maintaining uterine structural integrity and providing contractile force for parturition. The myometrial structure changes in adaptation to the pregnancy via stage-specific transcriptomic profiles. Data from the mouse model indicate that changes of myometrial epigenomic landscape precedes the adoption of stage-specific gene expression pattern at term. The present study documents the transcriptomic profile and epigenomic landscape of term pregnant myometrial tissues and functionally characterize a subset of putative enhancers to further understand the enhancer-gene interaction in human the myometrium.