Expanding the editable genome and CRISPR-Cas9 versatility using DNA cutting-free gene targeting based on in trans paired nicking
Ontology highlight
ABSTRACT: Genome editing typically involves recombination between donor nucleic acids and genomic sequences subjected to double-stranded DNA breaks (DSBs) made by programmable nucleases (e.g. CRISPR-Cas9). Yet, amongst other deleterious by-products, DSBs yield translocations, off-target mutations and, most pervasively, unpredictable on-target allelic disruptions. Remarkably, hitherto, the untoward phenotypic consequences of on-target disruptions at allelic and non-allelic (e.g. pseudogene) sequences have received scant scrutiny and, crucially, remain to be addressed. Here, we demonstrate that gene-edited cells can lose fitness due to on-target DSBs and report that simultaneous single-stranded DNA break formation at donor and target DNA by CRISPR-Cas9 “nickases” overcomes, to a great extent, such genotype-phenotype disrupting events. Moreover, in trans paired nicking gene editing can efficiently and precisely add large DNA segments (i.e. live-cell reporter tags) into essential and multiple-copy genomic sequences while circumventing most of the allelic and non-allelic collateral mutations and chromosomal rearrangements characteristic of nuclease-dependent gene editing procedures.
ORGANISM(S): Homo sapiens
PROVIDER: GSE135064 | GEO | 2019/12/04
REPOSITORIES: GEO
ACCESS DATA