Expression data from D. melanogaster guts with suppression of Imd in progenitors or enterocytes
Ontology highlight
ABSTRACT: We used RNA-seq to examine transcriptional proflies of midguts with suppression of Imd in progenitors (e_* samples) or enterocytes (M_* samples) . We found significant differences between the contributions of enterocyte IMD and progenitor IMD to intestinal homeostasis.
Project description:The goal of this study is to analyze changes in gene expression produced in posterior midguts after knocking down Gli in enterocytes (EC) during 9 days. Gli was depleted from ECs using a drug-inducible version of the binary GAL4-UAS system in combination with UAS-GLI-RNAi. Targeted gene expression using the 5966GS-GAL4 driver is observed in adult ECs when flies are fed the progesterone analog RU486 (RU+); addition of ethanol is used as a control (RU-), providing cohorts of isogenic individuals with or without induction of the Gli-RNAi transgene.
Project description:We used RNA-seq to examine transcriptional profiles of midgut progenitor cells with suppression of Imd in progenitors. We found significant differences between the contributions of progenitor IMD to intestinal homeostasis.
Project description:Our RNA-seq results show the changes in gene expression during differentiation and maturation of iPS-derived enterocytes, as well as that treatment during the last stage with Vitamin D3 (VD3) enhanced enterocyte-related gene expression. Caco-2 and RNA from human adult small intestine were also sequenced as comparison.
Project description:The main objective of the sudy was to characterize the functions of Drosophila Hepatocyte Nuclear Factor 4 (dHNF4) in midgut enterocytes. For this, we expressed a UAS-dHNF4 RNAi transgene under the control of mex-GAL4, which is active specifically in midgut enterocytes. We then collected adult male midguts, extracted total RNA and performed mRNA-seq. Our data demonstrate that dHNF4 acts as a master regulator of intestinal lipid metabolism in Drosophila.
Project description:The mosquito Anopheles gambiae uses its innate immune system to control bacterial and Plasmodium infection of its midgut tissue. The activation of potent IMD pathway-mediated anti-Plasmodium falciparum defenses is dependent on the presence of the midgut microbiota, which activate this defense system upon parasite infection through a peptidoglycan recognition protein, PGRPLC. We employed transcriptomic and reverse genetic analyses to compare the P. falciparum infection-responsive transcriptomes of septic and aseptic mosquitoes and to determine whether bacteria-independent anti-Plasmodium defenses exist. To examine the impact of P. falciparum infection on the mosquito midgut and carcass transcriptomes in the presence or absence of midgut bacteria, we used A. gambiae whole genome microarrays to compare the mRNA abundance of P. falciparum-infected and -naïve mosquitoes of antibiotic- and non-antibiotic treated cohorts. P. falciparum infection induced changes in the abundance of as many as 2,183 and 2,429 transcripts in whole mosquitoes belonging to a variety of functional groups in aseptic and septic mosquitoes. Ultimately, we were interested in identifying the genes involved in bacteria-independent anti-Plasmodium responses, and therefore we focused on transcripts displaying increased abundance in the parasite-infected aseptic midguts, placing a particular emphasis on those with predicted immune functions. Because of the central role of serine protease cascades in regulating insect immune defenses, we focused the remainder of our analysis on a clip-domain serine protease C2 (CLIPC2, AGAP004317) and a serine protease inhibitor 7 (SRPN7, AGAP007693) that were specifically upregulated in the parasite-infected, aseptic mosquito midgut. We showed that SRPN7 negatively and CLIPC2 positively regulate the anti-Plasmodium defense, independently of the midgut-associated bacteria. Co-silencing assays suggested that these two genes may function together in a signaling cascade. Neither gene was regulated, nor modulated, by infection with the rodent malaria parasite Plasmodium berghei, suggesting that SRPN7 and CLIPC2 are components of a defense system with preferential activity towards P. falciparum. Further analysis using RNA interference determined that these genes do not regulate the anti-Plasmodium defense mediated by the IMD pathway, and both factors act as agonists of the endogenous midgut microbiota, further demonstrating the lack of functional relatedness between these genes and the bacteria-dependent activation of the IMD pathway. This is the first study confirming the existence of a bacteria-independent, anti-P. falciparum defense. Aseptic and septic midguts and carcasses from P. falciparum-infected A. gambiae vs aseptic and septic midguts and carcasses from uninfected, blood-fed A. gambiae. 3 biological replicates and 1 pseudo-replicate per each array.
Project description:The intestinal epithelium is a highly structured tissue composed of repeating crypt-villus units. Enterocytes, which constitute the most abundant cell type, perform the diverse tasks of absorbing a wide range of nutrients while protecting the body from the harsh bacterial-rich environment. It is unknown if these tasks are equally performed by all enterocytes or whether they are spatially zonated along the villus axis. Here, we performed whole-transcriptome measurements of laser-capture-microdissected villus segments to extract a large panel of landmark genes, expressed in a zonated manner. We used these genes to localize single sequenced enterocytes along the villus axis, thus reconstructing a global spatial expression map. We found that most enterocyte genes were zonated. Enterocytes at villi bottoms expressed an anti-bacterial Reg gene program in a microbiome-dependent manner, potentially reducing the crypt pathogen exposure. Translation, splicing and respiration genes steadily decreased in expression towards the villi tops, whereas distinct mid-top villus zones sub-specialized in the absorption of carbohydrates, peptides and fat. Enterocytes at the villi tips exhibited a unique gene-expression signature consisting of Klf4, Egfr, Neat1, Malat1, cell adhesion and purine metabolism genes. Our study exposes broad spatial heterogeneity of enterocytes, which could be important for achieving their diverse tasks.