Project description:SH3 domain-binding protein that preferentially associates with Btk (SAB) is an outer-membrane docking protein for JNK-mediated impairment of mitochondrial function. Deletion of Sab in hepatocytes inhibits sustained JNK activation and cell death. The current study demonstrates that an increase in SAB expression enhanced the severity of acetaminophen-induced (APAP-induced) liver injury. Female mice were resistant to liver injury and exhibited markedly decreased hepatic SAB protein expression compared with male mice. The mechanism of SAB repression involved a pathway from ERα to p53 expression that induced miR34a-5p. miR34a-5p targeted the Sab mRNA coding region, thereby repressing SAB expression. Fulvestrant or p53 knockdown decreased miR34a-5p and increased SAB expression in female mice, leading to increased injury from APAP and TNF/galactosamine. In contrast, an ERα agonist increased p53 and miR34a-5p, which decreased SAB expression and hepatotoxicity in male mice. Hepatocyte-specific deletion of miR34a also increased the severity of liver injury in female mice, which was prevented by GalNAc-ASO knockdown of Sab. Similar to mice, premenopausal women expressed elevated levels of hepatic p53 and low levels of SAB, whereas age-matched men expressed low levels of p53 and high levels of SAB, but there was no difference in SAB expression between the sexes in the postmenopausal stage. In conclusion, SAB expression levels determined the severity of JNK-dependent liver injury. Female mice expressed low levels of hepatic SAB protein because of the ERα/p53/miR34a pathway, which repressed SAB expression and accounted for the resistance to liver injury seen in these females.
Project description:Normal tissue toxicity still remains a dose-limiting factor in clinical radiation therapy. Recently, plasminogen activator inhibitor type 1 (SERPINE1/PAI-1) was reported as an essential mediator of late radiation-induced intestinal injury. However, it is not clear whether PAI-1 plays a role in acute radiation-induced intestinal damage and we hypothesized that PAI-1 may play a role in the endothelium radiosensitivity. In vivo, in a model of radiation enteropathy in PAI-1 -/- mice, apoptosis of radiosensitive compartments, epithelial and microvascular endothelium was quantified. In vitro, the role of PAI-1 in the radiation-induced endothelial cells (ECs) death was investigated. The level of apoptotic ECs is lower in PAI-1 -/- compared with Wt mice after irradiation. This is associated with a conserved microvascular density and consequently with a better mucosal integrity in PAI-1 -/- mice. In vitro, irradiation rapidly stimulates PAI-1 expression in ECs and radiation sensitivity is increased in ECs that stably overexpress PAI-1, whereas PAI-1 knockdown increases EC survival after irradiation. Moreover, ECs prepared from PAI-1 -/- mice are more resistant to radiation-induced cell death than Wt ECs and this is associated with activation of the Akt pathway. This study demonstrates that PAI-1 plays a key role in radiation-induced EC death in the intestine and suggests that this contributes strongly to the progression of radiation-induced intestinal injury.
Project description:Endothelial defects significantly contribute to cardiovascular pathology in the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). Using an endothelium-specific progeria mouse model, we identify a novel, endothelium-specific microRNA (miR) signature linked to the p53-senescence pathway and a senescence-associated secretory phenotype (SASP). Progerin-expressing endothelial cells exert profound cell-non-autonomous effects initiating senescence in non-endothelial cell populations and causing immune cell infiltrates around blood vessels. Comparative miR expression analyses revealed unique upregulation of senescence-associated miR34a-5p in endothelial cells with strong accumulation at atheroprone aortic arch regions but also, in whole cardiac- and lung tissues as well as in the circulation of progeria mice. Mechanistically, miR34a-5p knockdown reduced not only p53 levels but also late-stage senescence regulator p16 with no effect on p21 levels, while p53 knockdown reduced miR34a-5p and partially rescued p21-mediated cell cycle inhibition with a moderate effect on SASP. These data demonstrate that miR34a-5p reinforces two separate senescence regulating branches in progerin-expressing endothelial cells, the p53- and p16-associated pathways, which synergistically maintain a senescence phenotype that contributes to cardiovascular pathology. Thus, the key function of circulatory miR34a-5p in endothelial dysfunction-linked cardiovascular pathology offers novel routes for diagnosis, prognosis and treatment for cardiovascular aging in HGPS and potentially geriatric patients. This research was supported by by the Austrian Science Fund grant [P 32595 /Grant DOI: 10.55776/P32595] to Selma Osmanagic-Myers, and (I 4694-B) to Roland Foisner, the latter under the frame of EJP RD, the European Joint Programme on Rare Diseases. In addition, this project has received funding from the European Union’s Horizon 2020 research and innovation programme under the EJP RD COFUND-EJP N 825575. https://www.doi.org/10.55776/P32595
Project description:Acute Lung Injury (ALI) due to inhaled pathogens causes high mortality. Underlying mechanisms are inadequately understood. Here, by optical imaging of live mouse lungs we show that a key mechanism is the viability of cytosolic Ca2+ buffering by the mitochondrial Ca2+ uniporter (MCU) in the lung’s surfactant-secreting, alveolar type 2 cells (AT2). The buffering increased mitochondrial Ca2+ and induced surfactant secretion in wild-type mice, but not in mice with AT2-specific MCU knockout. In the knockout mice, ALI due to intranasal LPS instillation caused severe pulmonary edema and mortality, which were mitigated by surfactant replenishment prior to LPS instillation, indicating surfactant’s protective effect against alveolar edema. In wild-type mice, intranasal LPS, or Pseudomonas aeruginosa decreased AT2 MCU. Loss of MCU abrogated buffering. The resulting mortality was reduced by spontaneous recovery of MCU expression, or by MCU replenishment. Enhancement of AT2 mitochondrial buffering, hence endogenous surfactant secretion, through MCU replenishment might be a therapy against ALI. Acute lung injury caused by inhalation of pathogens leads to mortality, but the mechanisms are unclear. Here, the authors show in mice that that loss of the mitochondrial calcium uniporter (MCU) of alveolar type 2 cells (AT2) impaired mitochondrial Ca2+ buffering and surfactant secretion, and increased mortality, in response to LPS instillation, suggesting the MCU as a potential therapeutic target in ALI.
Project description:AKI increases the risk of developing CKD, but the mechanisms linking AKI to CKD remain unclear. Because proximal tubule injury is the mainstay of AKI, we postulated that proximal tubule injury triggers features of CKD. We generated a novel mouse model to induce proximal tubule-specific adjustable injury by inducing the expression of diphtheria toxin (DT) receptor with variable prevalence in proximal tubules. Administration of high-dose DT in mice expressing the DT receptor consistently caused severe proximal tubule-specific injury associated with interstitial fibrosis and reduction of erythropoietin production. Mild proximal tubule injury from a single injection of low-dose DT triggered reversible fibrosis, whereas repeated mild injuries caused sustained interstitial fibrosis, inflammation, glomerulosclerosis, and atubular glomeruli. DT-induced proximal tubule-specific injury also triggered distal tubule injury. Furthermore, injured tubular cells cocultured with fibroblasts stimulated induction of extracellular matrix and inflammatory genes. These results support the existence of proximal-distal tubule crosstalk and crosstalk between tubular cells and fibroblasts. Overall, our data provide evidence that proximal tubule injury triggers several features of CKD and that the severity and frequency of proximal tubule injury determines the progression to CKD.
Project description:Background and objectivesIn polygynous societies, rich men have many offspring through the marriage of multiple wives. Evolutionary, rich households would therefore benefit more from sons, and according to the Trivers-Willard hypothesis, parents invest more in offspring of the sex that has the best reproductive prospects. We determined the sex differences in number of offspring, sex ratio of offspring, offspring survival and offspring weight in rich and poor households in a polygynous population.MethodologyWe studied a population of 28 994 individuals in Northern Ghana during an 8-year prospective follow-up. We determined the fertility rate for both men and women, sex ratio of 3511 newborn offspring and offspring survival in 16 632 offspring up to reproductive age (?18 years). Also, we collected 9842 weight measurements of 1470 offspring up to the age of 3 years from growth charts of local clinics.ResultsIn rich households, men have a lifetime number of 6.0 offspring, while for women this was 3.1. In line with evolutionary predictions, the male:female sex ratio was higher in rich households (0.52; poor households 0.49), sons had lower mortality in rich households (hazard ratio male versus female 1.06, P = 0.64; poor households: hazard ratio male versus female 1.46, P = 0.01) and sons also had higher weights in rich households (P = 0.008).Conclusions and implicationsIn rich households, men have higher reproductive prospects in this polygynous society and, in line with Trivers-Willard, we registered more sons in rich households, sons had lower mortality and higher weights, maximizing the reproductive output in this society.
Project description:Soluble epoxide hydrolase (sEH) in endothelial cells determines the plasma concentrations of epoxyeicosatrienoic acids (EETs), which may act as vasoactive agents to control vascular tone. We hypothesized that the regulation of sEH activity may have a therapeutic value in preventing acute kidney injury by controlling the concentration of EETs. In this study, we therefore induced ischemia-reperfusion injury (IRI) in C57BL/6 mice and controlled sEH activity by intraperitoneal administration of the sEH inhibitor 12-(3-adamantan-1-ylureido)-dodecanoic acid (AUDA). The deterioration of kidney function induced by IRI was partially moderated and prevented by AUDA treatment. In addition, AUDA treatment significantly attenuated tubular necrosis induced by IRI. Ischemic injury induced the down-regulation of sEH, and AUDA administration had no effect on the expression pattern of sEH induced by IRI. In vivo sEH activity was assessed by measuring the substrate epoxyoctadecenoic acid (EpOME) and its metabolite dihydroxyoctadec-12-enoic acid (DHOME). Ischemic injury had no effects on the plasma concentrations of EpOME and DHOME, but inhibition of sEH by AUDA significantly increased plasma EpOME and the EpOME/DHOME ratio. The protective effect of the sEH inhibitor was achieved by suppression of proinflammatory cytokines and up-regulation of regulatory cytokines. AUDA treatment prevented the intrarenal infiltration of inflammatory cells, but promoted endothelial cell migration and neovascularization. The results of this study suggest that treatment with sEH inhibitors can reduce acute kidney injury.
Project description:Idiopathic pulmonary fibrosis (IPF) is a chronic and often fatal pulmonary disorder characterized by fibroblast proliferation and the excess deposit of extracellular matrix proteins. The etiology of IPF is unknown, but a central role for microRNAs (miRNAs), a class of small non-coding regulatory RNAs, has been recently suggested. We report the upregulation of miR-199a-5p in mouse lungs undergoing bleomycin-induced fibrosis and also in human biopsies from IPF patients. Levels of miR-199a-5p were increased selectively in myofibroblasts and putative profibrotic effects of miR-199a-5p were further investigated in cultured lung fibroblasts. MiR-199a-5p expression was induced upon TGFβ exposure and ectopic expression of miR-199a-5p was sufficient to promote the pathogenic activation of pulmonary fibroblasts. CAV1, a critical mediator of pulmonary fibrosis, was established as a bona fide target of miR-199a-5p. Finally, we also found an aberrant expression of miR-199a-5p in mouse models of kidney and liver fibrosis, suggesting that dysregulation of miR-199a-5p represents a general mechanism contributing to the fibrotic process. We propose miR-199a-5p as a major regulator of fibrosis that represents a potential therapeutic target to treat fibroproliferative diseases. This SuperSeries is composed of the SubSeries listed below. Refer to individual Series