Effect of ILCs depletion on Macrophages in a mouse model of colitis
Ontology highlight
ABSTRACT: Anti CD90 was used to deplete ILCs in RAG mice at point of iniation of DSS colitis in Rag mice. After 6 days the Macrophages were sorted from the colon and compared by using RNASeq to mice in which ILCs had not been repleted but still had colitus induced.
Project description:Anti CD90 was used to deplete ILCs in Rag mice prior to the induction of colitis. After 6 days the mice were culled and RNASeq performed on RNA extracted from the Colon
Project description:Tristetraprolin (TTP, encoded by Zfp36) is an RNA-binding protein that plays a major role in the control of inflammation. Zfp36 -/-mice spontaneously develop a complex multi-organ inflammatory syndrome that shares many features with spondyloarthritis. Herein, we show that Zfp36 -/-mice are paradoxically protected from Dextran Sulfate Sodium (DSS)-induced colitis. This effect was maintained on a Rag2 -/- background but was lost in Rag2 -/-Il2rg -/-Zfp36 -/-mice that lack innate lymphoid cells (ILCs). Furthermore, we observed a local expansion of type 3 ILCs in the lamina propria of Zfp36 -/-mice. These cells produced large amounts of Interleukin (IL)-22 and were expanded in response to systemic inflammation. Finally, we show that IL-22 contributed to protection of Zfp36 -/-mice against DSSinduced colitis but had a minor impact on their spontaneous inflammatory syndrome. Taken together, these data highlight the complex role of TTP in the control of organ-specific inflammation.
Project description:Background: MicroRNAs (miRNAs) acting as negative regulators of gene expression are differentially expressed in intestinal tissues of patients with inflammatory bowel disease (IBD). Assessing the functional role of miRNAs in murine models of colitis facilitates elucidating the role of specific miRNAs in human IBD. The aim of this study was to determine the miRNA signature of murine models of colitis and to assess the influence of miR-21 on intestinal inflammation. Methods: miRNAs expression was accessed by microarray for acute and chronic murine model of colitis induced by DSS or TNBS. miR-21-deficient mouse and littermates controls were assessed in the standard DSS, TNBS and CD4+ T cell transfer models of colitis. RNAs of mouse colon and CD4+CD45RBHigh cells were analyzed by miRNA and mRNA microarray, and quantitative RT-PCR. Th1 polarization was accessed by flow-cytometry and ELISA. Results: Alterations of in miRNAs expression were identified for acute and chronic DSS colitis and TNBS colitis, receptively. The Expression of miRs-21, -142-3p and -223 was were distinct between DSS and TNBS models while overlap of numerous miRNAs was seen. Importantly, miRs-19b, -192 and -215, that are decreased in IBD, were significantly decreased in all 4 models of colitis. miR-21, which is increased in IBD, was increased in TNBS colitis but not the DSS colitis models. Further assessment of the miR-21-deficient 1-/- mice revealed that the deletion of miR-21 results in the exacerbation of both the TNBS and T cell-transfer models of colitis. Conclusions: miRNAs are differentially expressed in both human IBD and murine colitis, with overlap of several IBD-associated miRNAs. The demonstration that miR-21 deletion exacerbated CD4+ T cell-mediated models of colitis provides further evidence that miRNAs play significant roles in the pathogenesis of IBD. Gene expression profiles were established for normal miR-21-/- mice and wild type c57BL/6 mice (WT). Total of 6 samples with replicates were included in this study.
Project description:Background: MicroRNAs (miRNAs) acting as negative regulators of gene expression are differentially expressed in intestinal tissues of patients with inflammatory bowel disease (IBD). Assessing the functional role of miRNAs in murine models of colitis facilitates elucidating the role of specific miRNAs in human IBD. The aim of this study was to determine the miRNA signature of murine models of colitis and to assess the influence of miR-21 on intestinal inflammation. Methods: miRNAs expression was accessed by microarray for acute and chronic murine model of colitis induced by DSS or TNBS. miR-21-deficient mouse and littermates controls were assessed in the standard DSS, TNBS and CD4+ T cell transfer models of colitis. RNAs of mouse colon and CD4+CD45RBHigh cells were analyzed by miRNA and mRNA microarray, and quantitative RT-PCR. Th1 polarization was accessed by flow-cytometry and ELISA. Results: Alterations of in miRNAs expression were identified for acute and chronic DSS colitis and TNBS colitis, receptively. The Expression of miRs-21, -142-3p and -223 was were distinct between DSS and TNBS models while overlap of numerous miRNAs was seen. Importantly, miRs-19b, -192 and -215, that are decreased in IBD, were significantly decreased in all 4 models of colitis. miR-21, which is increased in IBD, was increased in TNBS colitis but not the DSS colitis models. Further assessment of the miR-21-deficient 1-/- mice revealed that the deletion of miR-21 results in the exacerbation of both the TNBS and T cell-transfer models of colitis. Conclusions: miRNAs are differentially expressed in both human IBD and murine colitis, with overlap of several IBD-associated miRNAs. The demonstration that miR-21 deletion exacerbated CD4+ T cell-mediated models of colitis provides further evidence that miRNAs play significant roles in the pathogenesis of IBD. miRNAs expression was accesed for acute and chronic murine model of colitis induced by DSS or TNBS.Total of 20 samples with duplicates were analyed in this study.
Project description:Background: MicroRNAs (miRNAs) acting as negative regulators of gene expression are differentially expressed in intestinal tissues of patients with inflammatory bowel disease (IBD). Assessing the functional role of miRNAs in murine models of colitis facilitates elucidating the role of specific miRNAs in human IBD. The aim of this study was to determine the miRNA signature of murine models of colitis and to assess the influence of miR-21 on intestinal inflammation. Methods: miRNAs expression was accessed by microarray for acute and chronic murine model of colitis induced by DSS or TNBS. miR-21-deficient mouse and littermates controls were assessed in the standard DSS, TNBS and CD4+ T cell transfer models of colitis. RNAs of mouse colon and CD4+CD45RBHigh cells were analyzed by miRNA and mRNA microarray, and quantitative RT-PCR. Th1 polarization was accessed by flow-cytometry and ELISA. Results: Alterations of in miRNAs expression were identified for acute and chronic DSS colitis and TNBS colitis, receptively. The Expression of miRs-21, -142-3p and -223 was were distinct between DSS and TNBS models while overlap of numerous miRNAs was seen. Importantly, miRs-19b, -192 and -215, that are decreased in IBD, were significantly decreased in all 4 models of colitis. miR-21, which is increased in IBD, was increased in TNBS colitis but not the DSS colitis models. Further assessment of the miR-21-deficient 1-/- mice revealed that the deletion of miR-21 results in the exacerbation of both the TNBS and T cell-transfer models of colitis. Conclusions: miRNAs are differentially expressed in both human IBD and murine colitis, with overlap of several IBD-associated miRNAs. The demonstration that miR-21 deletion exacerbated CD4+ T cell-mediated models of colitis provides further evidence that miRNAs play significant roles in the pathogenesis of IBD. miRNAs expression was accesed for acute and chronic murine model of colitis induced by DSS or TNBS.Total of 20 samples with duplicates were analyed in this study.
Project description:Study hypothesized that oral supplementation of methylthioadenosine (MTA) would reduce the inflammatory response in mice exposed to an agent that induces colitis (DSS) and that this reduction in inflammatory response would lead to reduced clinical disease burden. Total RNA was collected from isolated colons of mice in the following treatment groups: untreated controls, DSS only, DSS+MTA
Project description:Experimental colitis was induced in mice by the administration of 2% (w/v) Dextran sulfate sodium salt (DSS, colitis grade, 36-50kDa, MP Biomedicals) in the drinking water for 7 days followed by normal drinking water w/o DSS. Distal colons were collected two days later.
Project description:Experimental colitis was induced in mice by the administration of 1.5% (w/v) Dextran sulfate sodium salt (DSS, colitis grade, 36-50kDa, MP Biomedicals) in the drinking water for 7 days followed by normal drinking water w/o DSS. Distal colons were collected two days later.