Glucagon-receptor signaling regulates energy metabolism via hepatic Farnesoid X Receptor and Fibroblast Growth Factor 21
Ontology highlight
ABSTRACT: Glucagon, an essential regulator of glucose and lipid metabolism, also promotes weight loss, in part through potentiation of fibroblast-growth factor 21 (FGF21) secretion. However, FGF21 is only a partial mediator of metabolic actions ensuing from GcgR-activation, prompting us to search for additional pathways. Intriguingly, chronic GcgR agonism increases plasma bile acid levels. We hypothesized that GcgR agonism regulates energy metabolism, at least in part, through farnesoid X receptor (FXR). To test this hypothesis, we studied whole body and liver-specific FXR knockout (FXR∆liver) mice. Chronic GcgR agonist (IUB288) administration in diet-induced obese (DIO) Gcgr, Fgf21 and Fxr whole body or liver-specific knockout (∆liver) mice failed to reduce body weight (BW) when compared to wildtype (WT) mice. IUB288 increased energy expenditure and respiration in DIO WT mice, but not FXR∆liver mice. GcgR agonism increased [14C]-palmitate oxidation in hepatocytes isolated from WT mice in a dose-dependent manner, an effect blunted in hepatocytes from FXR∆liver mice. Our data clearly demonstrate that control of whole body energy expenditure by GcgR agonism requires intact FXR signaling in the liver. This heretofore-unappreciated aspect of glucagon biology has implications for the use of GcgR agonism in the therapy of metabolic disorders.
ORGANISM(S): Mus musculus
PROVIDER: GSE135881 | GEO | 2019/08/16
REPOSITORIES: GEO
ACCESS DATA