Effects of different fat source diets on the transcriptome of brain, liver and spleen in Yangze sturgeon
Ontology highlight
ABSTRACT: Nutrition is an important part of the protection process of Yangze sturgeon. This study tested the transcriptome levels of brain, liver and spleen after feeding different fat source diets to Yangze sturgeon.
Project description:Most commonly used models of non-alcoholic steatohepatitis (NASH) are diets based on specific gene knockouts or represent extreme manipulations of diet. We have examined the effects of modest increased caloric intake and high dietary unsaturated fat content on the development of NASH in male rats using a model in which overfeeding is accomplished via intragastric infusion of liquid diets as a part of total enteral nutrition. Male Sprague dawley rats were fed diets 5% corn oil containing diets at 187 Kcal/kg3/4/d or fed 70% corn oil containing diets at 220 Kcal/kg3/4/d for a period of 3 weeks. Hepatic gene expression were assessed at the end of the study. Our results indicate that overfeeding of high unsaturated fat diets leads to pathological, endocrine and metabolic changes characteristic of NASH patients and is associated with increased oxidative stress and TNF-a. Keywords: Steatosis and unsaturated fat
Project description:Most commonly used models of non-alcoholic steatohepatitis (NASH) are diets based on specific gene knockouts or represent extreme manipulations of diet. We have examined the effects of modest increased caloric intake and high dietary unsaturated fat content on the development of NASH in male rats using a model in which overfeeding is accomplished via intragastric infusion of liquid diets as a part of total enteral nutrition. Male Sprague dawley rats were fed diets 5% corn oil containing diets at 187 Kcal/kg3/4/d or fed 70% corn oil containing diets at 220 Kcal/kg3/4/d for a period of 3 weeks. Hepatic gene expression were assessed at the end of the study. Our results indicate that overfeeding of high unsaturated fat diets leads to pathological, endocrine and metabolic changes characteristic of NASH patients and is associated with increased oxidative stress and TNF-a. Experiment Overall Design: Two groups of male sprague dawley rats were fed liquid diets via total enteral nutrition. Experiment Overall Design: Group 1, Control, Rats were fed diets containing 5% Corn oil at 187 Kcal/kg3/4/d for 3 weeks. Experiment Overall Design: Group 2, NASH, Rats were fed diets containing 70% corn oil at 220 Kcal/kg3/4/d for 3 weeks.
Project description:A diet rich in nucleic acids and protamin protein, termed as nucleoprotein was used for the study. Mice were fed with NP diets for 4 weeks followed by removal of the liver and spleen. Total RNA extracted from livers and spleens was pooled in each group (low NP or LNP-control, and 1.2% NP-treatment, diets), prior to DNA microarray analysis (Agilent mouse whole genome 4 x 44K). Results revealed 1373 & 3386 up (>1.5 fold)- and down (<0.75 fold)-regulated genes in the liver, and 252 & 1838 up- and down-regulated genes in the spleen, respectively following 1.2%NP diet. Analysis of genes related to NP diets will be discussed.
Project description:The composition of the diet affects many processes in the body, including body weight and endocrine system. We have previously shown that dietary fat also affects the immune system. Mice fed high fat diet rich in polyunsaturated fatty acids survive S. aureus infection to a much greater extent than mice fed high fat diet rich in saturated fatty acids. Here we present data regarding the dietary effects on protein expression in spleen from mice fed three different diets, I) low fat/chow diet (LFD, n=4), II) high fat diet rich in saturated fatty acids (HFD-S, n=4) and III) high fat diet rich in polyunsaturated fatty acids (HFD-P, n=4). We performed mass spectrophotometry based quantitative proteomics analysis of isolated spleen by implementing the isobaric tags for relative and absolute quantification (iTRAQ) approach. Mass spectrometry data were analysed using Proteome Discoverer 2.4 software using the search engine mascot against Mus musculus in SwissProt. 924 proteins are identified in all sets (n=4) for different dietary effects taken for statistical analysis using Qlucore Omics Explorer software. Only 20 proteins were found to be differentially expressed with a cut-off value of false discovery rate < 0.1 (q-value) when comparing HFD-S and HFD-P but no differentially expressed proteins were found when LFD was compared with HFD-P or HFD-S. We identified a subset of proteins that showed an inverse expression pattern between two high fat diets. These differentially expressed proteins were further classified by gene ontology for their role in biological processes and molecular functions.
Project description:In this study, we utilized the microfluidics chip technology on the gonads of Amur sturgeon to identifiy gender-specific miRNAs. The probes of all miRNAs about 663 published in fish and our novel miRNAs from sturgeon were chosed in the microarray experiment. Above 4µg to 8µg total RNA from one female and one male separativley were performed the miRNA microarray assays.Each probe was repeated five times on the chip to ensure reproducibility of microarray.
Project description:Mammary gland (MG) de novo lipogenesis contributes significantly to milk fat in animals but little is known in humans. We hypothesized that de novo lipogenesis, as reflected by incorporation of 13C carbons from [U-13C]glucose into fatty acids (FAs) and glycerol in triglycerides (TG), will be greater: a. in milk than plasma TG, b. during a high carbohydrate (H-CHO) diet than high fat (H-FAT) diet and c. during feeding than fasting. Healthy lactating women were studied on two isocaloric, isonitrogenous diets. On one occasion subjects received diets containing H-FAT or H-CHO diet for 1 week. Incorporation of 13C from infused [U-13C]glucose into FAs and glycerol was measured using GC/MS methodology and gene expression using RNA isolated from breast milk fat globule (MFG). Incorporation of 13C2 into milk FAs, increased with increased chain length of the FAs from C2:0 to C12:0 but progressively declined in C14:0 and C16:0 and was not detected in FAs >C16. During feeding, regardless of diets, enrichment of 13C2 in milk FA and 13C3 in milk glycerol were ~3 and ~7 fold higher compared to plasma FA and glycerol, respectively. Following an overnight fast during H-CHO and H-FAT diets study periods, 25% and 6%, respectively, of medium chain FAs (MCFAs, C6-C12) were derived from glucose but increased to 75% and 25% with feeding. The expression of genes involved in FA or glycerol synthesis pathways was unchanged regardless of diet or fast-fed conditions. Conclusions: The human MG is capable of de novo lipogenesis, of primarily MCFAs and glycerol, which is influenced by the macro-nutrient composition of the maternal diet. On day 7 of consumption of each of the two diets milk samples collected from 7 healthy, lean, exclusively breastfeeding women following an overnight fast and feeding conditions [7 x 2 x 2 = 28 samples] were processed for isotope enrichments and RNA isolation from the milk fat globules. The total RNA was utilized for microarray analyses.
Project description:A diet rich in nucleic acids and protamin protein, termed as nucleoprotein was used for the study. Mice were fed with NP diets for 4 weeks followed by removal of the liver and spleen. Total RNA extracted from livers and spleens was pooled in each group (low NP or LNP-control, and 1.2% NP-treatment, diets), prior to DNA microarray analysis (Agilent mouse whole genome 4 x 44K). Results revealed 1373 & 3386 up (>1.5 fold)- and down (<0.75 fold)-regulated genes in the liver, and 252 & 1838 up- and down-regulated genes in the spleen, respectively following 1.2%NP diet. Analysis of genes related to NP diets will be discussed. To investigate the effect of NP, we added S-nuclegen® at a concentration of 1.2% into CLEA basic purified diet (CLEA JAPAN, Inc., Tokyo, Japan) known to include nucleic acids (NAs) at much lower amounts than standard diet. By HPLC analysis CLEA basic purified diet (low NP), and 1.2% NP diet included 0.03%, and 0.5% NAs, respectively. Male C57BL/6J mice (13 weeks) were fed with NP diet for 4 weeks. The liver and spleen were removed and deep frozen in liquid nitrogen. Whole blood was also sampled from these mice, and frozen in liquid nitrogen. Total RNA extracted from livers and spleens was pooled in each group (control, lowNP or LNP; and treatment, 1.2%NP), prior to DNA microarray analysis (Agilent mouse whole genome 4 x 44K).
Project description:Mammary gland (MG) de novo lipogenesis contributes significantly to milk fat in animals but little is known in humans. We hypothesized that de novo lipogenesis, as reflected by incorporation of 13C carbons from [U-13C]glucose into fatty acids (FAs) and glycerol in triglycerides (TG), will be greater: a. in milk than plasma TG, b. during a high carbohydrate (H-CHO) diet than high fat (H-FAT) diet and c. during feeding than fasting. Healthy lactating women were studied on two isocaloric, isonitrogenous diets. On one occasion subjects received diets containing H-FAT or H-CHO diet for 1 week. Incorporation of 13C from infused [U-13C]glucose into FAs and glycerol was measured using GC/MS methodology and gene expression using RNA isolated from breast milk fat globule (MFG). Incorporation of 13C2 into milk FAs, increased with increased chain length of the FAs from C2:0 to C12:0 but progressively declined in C14:0 and C16:0 and was not detected in FAs >C16. During feeding, regardless of diets, enrichment of 13C2 in milk FA and 13C3 in milk glycerol were ~3 and ~7 fold higher compared to plasma FA and glycerol, respectively. Following an overnight fast during H-CHO and H-FAT diets study periods, 25% and 6%, respectively, of medium chain FAs (MCFAs, C6-C12) were derived from glucose but increased to 75% and 25% with feeding. The expression of genes involved in FA or glycerol synthesis pathways was unchanged regardless of diet or fast-fed conditions. Conclusions: The human MG is capable of de novo lipogenesis, of primarily MCFAs and glycerol, which is influenced by the macro-nutrient composition of the maternal diet.