Mec1 is activated at the onset of normal S phase by low dNTP pools impeding DNA replication [microarray]
Ontology highlight
ABSTRACT: The Mec1 and Rad53 kinases play a central role during acute replication stress in budding yeast. They are also essential for viability in normal growth conditions, but the signal that activates the Mec1–Rad53 pathway in the absence of exogenous insults is currently unknown. Here, we show that this pathway is active at the onset of normal S phase because dNTP levels present in G1 phase are not sufficient to support processive DNA synthesis and impede DNA replication. This activation can be suppressed experimentally by increasing dNTP levels in G1 phase. Moreover, we show that unchallenged cells entering S phase in the absence of Rad53 undergo irreversible fork collapse and mitotic catastrophe. Together, these data indicate that cells use dNTP shortage to detect the onset of DNA replication and activate the Mec1–Rad53 pathway, which in turn maintains functional forks and triggers dNTP synthesis, allowing the completion of DNA replication.
ORGANISM(S): Saccharomyces cerevisiae
PROVIDER: GSE136601 | GEO | 2020/03/17
REPOSITORIES: GEO
ACCESS DATA