DJ-1 is dispensable for human stem cell homeostasis
Ontology highlight
ABSTRACT: our data showed that the absence of DJ-1 had no adverse effects on proliferation, differentiation, and oxidative stress responses of human stem cells such as hNSCs and hMSCs as well as hVECs, suggesting that loss of DJ-1 function alone is insufficient to disrupt the homeostasis of these human cells. In addition, we found that CHCHD2 was upregulated upon DJ-1 deficiency, which may account for the absence of severe phenotypes in various types of DJ-1-deficient cells. For the first time, our study revealed the 'see-saw' expression pattern of two Parkinson’s disease-associated genes, providing potential clues for understanding the mechanisms of DJ-1- and CHCHD2-associated Parkinson’s disease.
Project description:DJ-1 is an atypical peroxiredoxin-like peroxidase that may act as a redox-dependent chaperone and a regulator of transcription. To explore DJ-1-mediated transcriptional control in Parkinson’s disease (PD), we generated human neuroblastoma cells with inducible knock-down of DJ-1 expression. We then used functional genomic techniques to identify novel pathways dysregulated by loss of DJ-1 function. Using microarray gene expression profiling, we found that DJ-1 silencing alters the expression of 26 genes, with 10 down-regulated and 16 up-regulated transcripts. Among the down-regulated genes we found Ret, tyrosine kinase receptor for the neurotrophic factor GDNF. Taking advantage of Ingenuity Pathways Analysis, we identified hypoxia inducible factor 1 alpha (Hif1a) as a possible mediator of the interplay between DJ-1 and Ret. We show that Hif1a is stabilized in the absence of DJ-1, and that loss of DJ-1 generates hypoxia and accumulation of free radical species (ROS). Overexpression of wt DJ-1, but not of C106A and L166P mutants deficient in ROS scavenger activity, rescues Ret expression in neuroblastoma cells. These findings reveal novel players in PD pathogenesis and provide evidence for additional pathways involved in DJ-1-mediated neurodegeneration.
Project description:Excessive reactive oxygen species (ROS) underlie the pathogenesis of multiple disorders. Nevertheless, physiological levels of ROS are required for intracellular signalling and maintenance of metabolic homeostasis. DJ-1, a Parkinson’s disease-associated protein, is involved in the regulation of oxidative stress. Our aim in this study was to determine the effect of DJ-1 disruption on gene expression in muscle cells. To this end, we transfected a murine myoblast cell line, C2C12 cells with siRNA targeting DJ-1.
Project description:Decline in immune function during aging increases susceptibility to different aging related diseases. However, the underlying molecular mechanisms, especially the genetic factors contributing to imbalance of naïve/memory T-cell subpopulations, still remain largely elusive. Here we show that loss of DJ-1 encoded by PARK7/DJ-1, causing early-onset familial Parkinson’s disease (PD), unexpectedly diminished signs of immunoaging in T-cell compartments of both human and mice. Compared with two gender-matched unaffected siblings of similar ages, the index PD patient with DJ-1 deficiency showed a decline in many critical immunoaging features, including almost doubled non-senescent T cells. The observation was further consolidated by the results in 45-week-old DJ-1 knockout mice. Our data demonstrated that DJ-1 regulates several immunoaging features via hematopoietic-intrinsic and naïve-CD8-intrinsic mechanisms. Mechanistically, DJ-1 depletion reduced oxidative phosphorylation (OXPHOS) and impaired TCR sensitivity in naïve CD8 T cells at a young age, accumulatively leading to a reduced aging process in T-cell compartments in older mice. Our finding suggests an unrecognized critical role of DJ-1 in regulating immunoaging, discovering a potent target to interfere with immunoaging- and aging-associated diseases.
Project description:Parkinson disease (PD) is a major neurodegenerative condition with several rare Mendelian forms. Oxidative stress and mitochondrial function have been implicated in the pathogenesis of PD but the molecular mechanism(s) involved in the degeneration of specific neuronal groups remains unclear. DJ-1 mutations are one cause of recessive parkinsonism, but this gene is also involved in cancer by promoting Ras signaling and suppressing PTEN-induced apoptosis. The specific function of DJ-1 is unclear, although it is responsive to oxidative stress and may play a role in the maintenance of mitochondria. Here we show that DJ-1 associates with specific RNA targets in cells and in the brain including mitochondrial genes, genes involved in glutathione metabolism and members of the PTEN/PI3K cascade. Pathogenic recessive mutants are deficient in this activity. We show that DJ-1 is sufficient for RNA binding at nanomolar concentrations in vitro and that there is some RNA sequence specificity to the association. Oxidative stress causes DJ-1 to dissociate from RNA. Using in vitro and in vivo models of mild oxidative stress, we show that DJ-1 normally suppresses translation in normal circumstances but allows translation after oxidative stress. We tested the hypothesis that these specific RNA targets are responsible for sensitivity to stress by exposing knockout flies to glutathione synthesis inhibitors and saw the predicted increased sensitivity in vivo. These data implicate a single mechanism for the pleiotropic effects of DJ-1 in different model systems, namely that the protein binds and regulates specific groups of RNA targets in an oxidationdependent manner. Furthermore, these results suggest how a small protein might both be an upstream regulator of processes important in parkinsonism and be a modifier of cancer-related processes. Keywords: Immunoprecipitated RNA comparisons
Project description:Background DJ-1 is an antioxidant protein known to regulate mast cell mediated allergic response, but its role in airway eosinophilic interactions and allergic inflammation is not known. Objective The aim of this study was to investigate the role of DJ-1 in airway eosinophilic inflammation in vitro and in vivo. Methods Ovalbumin-induced airway allergic inflammation was established in mice. ELISA was adopted to analyze DJ-1 and cytokine levels in mouse bronchoalveolar lavage fluid. Transcriptional profiling of mouse lung tissues was conducted by single-cell RNA sequencing technology. The role of DJ-1 in the differentiation of airway progenitor cells into goblet cells was examined by organoid cultures, immunofluorescence staining, quantitative PCR, and cell transplantation in normal, DJ-1 knockout (KO), or conditional DJ-1 KO mice. Results We observed that DJ-1 was increased in the lung tissues of ovalbumin-sensitized and challenged mice. DJ-1 KO mice exhibited reduced airway eosinophil infiltration and goblet cell differentiation. Mechanistically, we discovered that eosinophil-club cell interactions are reduced in the absence of DJ-1. Organoid cultures indicated that eosinophils impair the proliferative potential of club cells. Intratracheal transplantation of DJ-1-deficient eosinophils suppresses airway goblet cell differentiation. Loss of DJ-1 inhibits the metabolism of arachidonic acid into cysteinyl leukotrienes in eosinophils while these secreted metabolites promote airway goblet cell fate in organoid cultures and in vivo. Conclusion DJ-1-mediated interactions between airway epithelial progenitor cells and immune cells are essential in controlling airway goblet cell metaplasia and eosinophilia. Blockade of the DJ-1 pathway is protective against airway allergic inflammation.
Project description:Decline in immune function during aging increases susceptibility to different aging related diseases. However, the underlying molecular mechanisms, especially the genetic factors contributing to imbalance of naïve/memory T-cell subpopulations, still remain largely elusive. Here we show that loss of DJ-1 encoded by PARK7/DJ-1, causing early-onset familial Parkinson’s disease (PD), unexpectedly diminished signs of immunoaging in T-cell compartments of both human and mice. Compared with two gender-matched unaffected siblings of similar ages, the index PD patient with DJ-1 deficiency showed a decline in many critical immunoaging features, including almost doubled non-senescent T cells. The observation was further consolidated by the results in 45-week-old DJ-1 knockout mice. Our data demonstrated that DJ-1 regulates several immunoaging features via hematopoietic-intrinsic and naïve-CD8-intrinsic mechanisms. Mechanistically, DJ-1 depletion reduced oxidative phosphorylation (OXPHOS) and impaired TCR sensitivity in naïve CD8 T cells at a young age, accumulatively leading to a reduced aging process in T-cell compartments in older mice. Our finding suggests an unrecognized critical role of DJ-1 in regulating immunoaging, discovering a potent target to interfere with immunoaging- and aging-associated diseases.
Project description:DJ-1 is an atypical peroxiredoxin-like peroxidase that may act as a redox-dependent chaperone and a regulator of transcription. To explore DJ-1-mediated transcriptional control in Parkinsonâ??s disease (PD), we generated human neuroblastoma cells with inducible knock-down of DJ-1 expression. We then used functional genomic techniques to identify novel pathways dysregulated by loss of DJ-1 function. Using microarray gene expression profiling, we found that DJ-1 silencing alters the expression of 26 genes, with 10 down-regulated and 16 up-regulated transcripts. Among the down-regulated genes we found Ret, tyrosine kinase receptor for the neurotrophic factor GDNF. Taking advantage of Ingenuity Pathways Analysis, we identified hypoxia inducible factor 1 alpha (Hif1a) as a possible mediator of the interplay between DJ-1 and Ret. We show that Hif1a is stabilized in the absence of DJ-1, and that loss of DJ-1 generates hypoxia and accumulation of free radical species (ROS). Overexpression of wt DJ-1, but not of C106A and L166P mutants deficient in ROS scavenger activity, rescues Ret expression in neuroblastoma cells. These findings reveal novel players in PD pathogenesis and provide evidence for additional pathways involved in DJ-1-mediated neurodegeneration. Comparison between DJ-1-silenced human SH-SY5Y neuroblastoma cells and control cells. Two clones were selected for each condition, and each clone was analyzed in duplicate, for a total of 8 samples.
Project description:Background: Specific microglia responses are thought to contribute to the development and progression of neurodegenerative diseases, including Parkinson’s disease (PD). However, the phenotypic acquisition of microglial cells and their role during the underlying neuroinflammatory processes remain largely elusive. Here, according to the multiple-hit hypothesis, which stipulates that PD etiology is determined by a combination of genetics and various environmental risk factors, we investigate microglial transcriptional programs and morphological adaptations under PARK7/DJ-1 deficiency, a genetic cause of PD, during lipopolysaccharide (LPS)-induced inflammation. Methods: Using a combination of single-cell RNA-sequencing, bulk RNA-sequencing, multicolor flow cytometry and immunofluorescence analyses, we comprehensively compared microglial cell phenotypic characteristics in PARK7/DJ-1 knock-out (KO) with wildtype littermate mice following 6- or 24-hour intraperitoneal injection with LPS. In a translational approach, we conducted corresponding analyses in human PARK7/DJ-1 mutant induced pluripotent stem cell (iPSC)-derived microglia and murine bone marrow-derived macrophages (BMDMs). Results: By excluding the contribution of other immune brain resident and peripheral cells, we show that microglia acutely isolated from PARK7/DJ-1 KO mice display a distinct phenotype, specially related to type II interferon and DNA damage response signaling, when compared with wildtype microglia, in response to LPS. We also detected discrete signatures in human PARK7/DJ-1 mutant iPSC-derived microglia and BMDMs from PARK7/DJ-1 KO mice. These specific transcriptional signatures were reflected at the morphological level, with microglia in LPS-treated PARK7/DJ-1 KO mice showing a less amoeboid cell shape compared to wildtype mice, both at 6 and 24 hours after acute inflammation, as also observed in BMDMs. Conclusions: Taken together, our results show that, under inflammatory conditions, PARK7/DJ-1 deficiency skews microglia towards a distinct phenotype characterized by downregulation of genes involved in type II interferon signaling and a less prominent amoeboid morphology compared to wildtype microglia. These findings suggest that the underlying oxidative stress associated with the lack of PARK7/DJ-1 affects microglia neuroinflammatory responses, which may play a causative role in PD onset and progression.
Project description:Background: Specific microglia responses are thought to contribute to the development and progression of neurodegenerative diseases, including Parkinson’s disease (PD). However, the phenotypic acquisition of microglial cells and their role during the underlying neuroinflammatory processes remain largely elusive. Here, according to the multiple-hit hypothesis, which stipulates that PD etiology is determined by a combination of genetics and various environmental risk factors, we investigate microglial transcriptional programs and morphological adaptations under PARK7/DJ-1 deficiency, a genetic cause of PD, during lipopolysaccharide (LPS)-induced inflammation. Methods: Using a combination of single-cell RNA-sequencing, bulk RNA-sequencing, multicolor flow cytometry and immunofluorescence analyses, we comprehensively compared microglial cell phenotypic characteristics in PARK7/DJ-1 knock-out (KO) with wildtype littermate mice following 6- or 24-hour intraperitoneal injection with LPS. For translational perspectives, we conducted corresponding analyses in human PARK7/DJ-1 mutant induced pluripotent stem cell (iPSC)-derived microglia and murine bone marrow-derived macrophages (BMDMs). Results: By excluding the contribution of other immune brain resident and peripheral cells, we show that microglia acutely isolated from PARK7/DJ-1 KO mice display a distinct phenotype, specially related to type II interferon and DNA damage response signaling, when compared with wildtype microglia, in response to LPS. We also detected discrete signatures in human PARK7/DJ-1 mutant iPSC-derived microglia and BMDMs from PARK7/DJ-1 KO mice. These specific transcriptional signatures were reflected at the morphological level, with microglia in LPS-treated PARK7/DJ-1 KO mice showing a less amoeboid cell shape compared to wildtype mice, both at 6 and 24 hours after acute inflammation, as also observed in BMDMs. Conclusions: Taken together, our results show that, under inflammatory conditions, PARK7/DJ-1 deficiency skews microglia towards a distinct phenotype characterized by downregulation of genes involved in type II interferon signaling and a less prominent amoeboid morphology compared to wildtype microglia. These findings suggest that the underlying oxidative stress associated with the lack of PARK7/DJ-1 affects microglia neuroinflammatory responses, which may play a causative role in PD onset and progression.